IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3157-d564288.html
   My bibliography  Save this article

The Efficiency of the Biogas Plant Operation Depending on the Substrate Used

Author

Listed:
  • Janina Piekutin

    (Department of Technology in Environmental Engineering, Faculty of Construction and Environmental Sciences, Bialystok University of Technology, 45A Wiejska Str., 15-351 Bialystok, Poland)

  • Monika Puchlik

    (Department of Forest Environment, Faculty of Construction and Environmental Sciences, Bialystok University of Technology, 45A Wiejska Str., 15-351 Bialystok, Poland)

  • Michał Haczykowski

    (White Moose, 13A K. Szałasa Str., 03-180 Warsaw, Poland)

  • Katarzyna Dyczewska

    (Department of Forest Environment, Faculty of Construction and Environmental Sciences, Bialystok University of Technology, 45A Wiejska Str., 15-351 Bialystok, Poland)

Abstract

The study aimed to assess the most efficient solution of raw material management in selected biogas plants into the concept of circular economy and evaluate the most efficient solution of raw material management in selected biogas plants due to the quality and quantity of the feed and the final product obtained, which is biogas, as well at the closed circulation (circular economy). The study evaluated two agricultural biogas plants on a real scale and one at the sewage treatment plant (in real scale) in northeastern Poland. A year-long study showed that in technical terms, the best work efficiency is achieved by agricultural biogas plants processing: silage, manure, apple pomace, potato pulp (biogas plant No. 1), followed by biogas plant No. 3 processing chicken manure, decoction, cattle manure, poultry slaughterhouse waste (sewage sludge, flotate, feathers), and finally, the lowest efficiency biogas plant was No. 2, the sewage treatment plant, which stabilized sewage sludge in the methane fermentation process. Moreover, based on the results, it was found that agricultural biogas gives the best efficiency in energy production from 1 ton of feed.

Suggested Citation

  • Janina Piekutin & Monika Puchlik & Michał Haczykowski & Katarzyna Dyczewska, 2021. "The Efficiency of the Biogas Plant Operation Depending on the Substrate Used," Energies, MDPI, vol. 14(11), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3157-:d:564288
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nandor Csikos & Malte Schwanebeck & Michael Kuhwald & Peter Szilassi & Rainer Duttmann, 2019. "Density of Biogas Power Plants as An Indicator of Bioenergy Generated Transformation of Agricultural Landscapes," Sustainability, MDPI, vol. 11(9), pages 1-23, April.
    2. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    3. Velásquez Piñas, Jean Agustin & Venturini, Osvaldo José & Silva Lora, Electo Eduardo & del Olmo, Oscar Almazan & Calle Roalcaba, Orly Denisse, 2019. "An economic holistic feasibility assessment of centralized and decentralized biogas plants with mono-digestion and co-digestion systems," Renewable Energy, Elsevier, vol. 139(C), pages 40-51.
    4. Adam Masłoń & Joanna Czarnota & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2020. "The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland," Energies, MDPI, vol. 13(22), pages 1-21, November.
    5. White, Eric M. & Latta, Greg & Alig, Ralph J. & Skog, Kenneth E. & Adams, Darius M., 2013. "Biomass production from the U.S. forest and agriculture sectors in support of a renewable electricity standard," Energy Policy, Elsevier, vol. 58(C), pages 64-74.
    6. Hamawand, Ihsan, 2015. "Anaerobic digestion process and bio-energy in meat industry: A review and a potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 37-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Ignatowicz & Jacek Piekarski & Paweł Kogut, 2021. "Influence of Selected Substrate Dosage on the Process of Biogas Installation Start-Up in Real Conditions," Energies, MDPI, vol. 14(18), pages 1-11, September.
    2. Katarzyna Ignatowicz & Gabriel Filipczak & Barbara Dybek & Grzegorz Wałowski, 2023. "Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples," Energies, MDPI, vol. 16(2), pages 1-17, January.
    3. Mariana Ferdeș & Gigel Paraschiv & Mariana Ionescu & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă, 2023. "Anaerobic Co-Digestion: A Way to Potentiate the Synergistic Effect of Multiple Substrates and Microbial Diversity," Energies, MDPI, vol. 16(5), pages 1-24, February.
    4. Piotr F. Borowski & Jan Barwicki, 2022. "Efficiency of Utilization of Wastes for Green Energy Production and Reduction of Pollution in Rural Areas," Energies, MDPI, vol. 16(1), pages 1-12, December.
    5. Grzegorz Augustyn & Jerzy Mikulik & Rafał Rumin & Marta Szyba, 2021. "Energy Self-Sufficient Livestock Farm as the Example of Agricultural Hybrid Off-Grid System," Energies, MDPI, vol. 14(21), pages 1-22, October.
    6. Ioannis Lemonidis & Dimitra C. Banti & Christos A. Tzenos & Sotirios D. Kalamaras & Thomas A. Kotsopoulos & Petros Samaras, 2022. "Energy Valorization of Fine Screenings from a Municipal Wastewater Treatment Plant," Energies, MDPI, vol. 15(21), pages 1-15, November.
    7. Kotchakarn Nantasaksiri & Patcharawat Charoen-amornkitt & Takashi Machimura & Kiichiro Hayashi, 2021. "Multi-Disciplinary Assessment of Napier Grass Plantation on Local Energetic, Environmental and Socioeconomic Industries: A Watershed-Scale Study in Southern Thailand," Sustainability, MDPI, vol. 13(24), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarzyna Ignatowicz & Jacek Piekarski & Paweł Kogut, 2021. "Influence of Selected Substrate Dosage on the Process of Biogas Installation Start-Up in Real Conditions," Energies, MDPI, vol. 14(18), pages 1-11, September.
    2. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Alejandro Moure Abelenda & Kirk T. Semple & George Aggidis & Farid Aiouache, 2022. "Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    4. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    5. Palakodeti, Advait & Azman, Samet & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2021. "A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    7. Kerstin Nielsen & Christina-Luise Roß & Marieke Hoffmann & Andreas Muskolus & Frank Ellmer & Timo Kautz, 2020. "The Chemical Composition of Biogas Digestates Determines Their Effect on Soil Microbial Activity," Agriculture, MDPI, vol. 10(6), pages 1-20, June.
    8. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    10. Mohammadpour, Hossein & Cord-Ruwisch, Ralf & Pivrikas, Almantas & Ho, Goen, 2022. "Simple energy-efficient electrochemically-driven CO2 scrubbing for biogas upgrading," Renewable Energy, Elsevier, vol. 195(C), pages 274-282.
    11. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    12. Ihsan Hamawand & Anas Ghadouani & Jochen Bundschuh & Sara Hamawand & Raed A. Al Juboori & Sayan Chakrabarty & Talal Yusaf, 2017. "A Critical Review on Processes and Energy Profile of the Australian Meat Processing Industry," Energies, MDPI, vol. 10(5), pages 1-29, May.
    13. Gahyun Baek & Jaai Kim & Jinsu Kim & Changsoo Lee, 2018. "Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion," Energies, MDPI, vol. 11(1), pages 1-18, January.
    14. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    15. Wang, Weiwei & Khanna, Madhu & Dwivedi, Puneet, 2013. "Optimal Mix of Feedstock for Biofuels: Implications for Land Use and GHG Emissions," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150736, Agricultural and Applied Economics Association.
    16. Ornelas-Ferreira, B. & Lobato, L.C.S. & Colturato, L.F.D. & Torres, E.O. & Pombo, L.M. & Pujatti, F.J.P. & Araújo, J.C. & Chernicharo, C.A.L., 2020. "Strategies for energy recovery and gains associated with the implementation of a solid state batch methanization system for treating organic waste from the city of Rio de Janeiro - Brazil," Renewable Energy, Elsevier, vol. 146(C), pages 1976-1983.
    17. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Robert Herrmann-Heber & Florian Ristau & Ehsan Mohseni & Sebastian Felix Reinecke & Uwe Hampel, 2021. "Experimental Oxygen Mass Transfer Study of Micro-Perforated Diffusers," Energies, MDPI, vol. 14(21), pages 1-14, November.
    19. Di Maria, Francesco & Micale, Caterina & Contini, Stefano, 2016. "Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective," Applied Energy, Elsevier, vol. 171(C), pages 67-76.
    20. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3157-:d:564288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.