IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v59y2016icp164-173.html
   My bibliography  Save this article

Personal carbon trading and subsidies for hybrid electric vehicles

Author

Listed:
  • Fan, Jin
  • He, Haonan
  • Wu, Yanrui

Abstract

This study proposes a personal carbon trading (PCT) model to understand subsidies for hybrid electric vehicles (HEVs) and attempts to derive the equilibrium price for carbon allowance. Based on the derived equilibrium price, this study then proposes formulas to calculate the cost-effective carbon subsidy for HEVs using the Chinese market as the case study. Sensitivity analyses are conducted to investigate the effect of gasoline price, vehicle price, interest rate, fuel efficiency and vehicle miles traveled on the equilibrium carbon price and the cost-effective carbon subsidy. The findings show that the PCT scheme reduces volatility in driving cost and an equilibrium carbon price determined by the market could be more favorable to achieve total carbon emission control than existing policy instruments, such as carbon tax. Moreover, consumers can be motivated to adopt HEVs once the market price for carbon allowances rises beyond the critical value. In particular, the critical carbon price for an over-emitter to choose a HEV is smaller than that for an under-emitter.

Suggested Citation

  • Fan, Jin & He, Haonan & Wu, Yanrui, 2016. "Personal carbon trading and subsidies for hybrid electric vehicles," Economic Modelling, Elsevier, vol. 59(C), pages 164-173.
  • Handle: RePEc:eee:ecmode:v:59:y:2016:i:c:p:164-173
    DOI: 10.1016/j.econmod.2016.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999316301882
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin L. Weitzman, 1974. "Prices vs. Quantities," Review of Economic Studies, Oxford University Press, vol. 41(4), pages 477-491.
    2. Tina Fawcett, 2004. "Carbon Rationing and Personal Energy Use," Energy & Environment, , vol. 15(6), pages 1067-1083, November.
    3. Erin T. Mansur, 2011. "Upstream versus Downstream Implementation of Climate Policy," NBER Chapters,in: The Design and Implementation of U.S. Climate Policy, pages 179-193 National Bureau of Economic Research, Inc.
    4. Austin, David & Dinan, Terry, 2005. "Clearing the air: The costs and consequences of higher CAFE standards and increased gasoline taxes," Journal of Environmental Economics and Management, Elsevier, vol. 50(3), pages 562-582, November.
    5. Walsh, D.M. & O'Sullivan, K. & Lee, W.T. & Devine, M.T., 2014. "When to invest in carbon capture and storage technology: A mathematical model," Energy Economics, Elsevier, vol. 42(C), pages 219-225.
    6. Wolff, Hendrik, 2014. "Keep Your Clunker in the Suburb: Low Emission Zones and Adoption of Green Vehicles," IZA Discussion Papers 8180, Institute for the Study of Labor (IZA).
    7. John Pezzey, 2003. "Emission Taxes and Tradeable Permits A Comparison of Views on Long-Run Efficiency," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(2), pages 329-342, October.
    8. Fan, Jin & Wang, Shanyong & Wu, Yanrui & Li, Jun & Zhao, Dingtao, 2015. "Buffer effect and price effect of a personal carbon trading scheme," Energy, Elsevier, vol. 82(C), pages 601-610.
    9. Harwatt, Helen & Tight, Miles & Bristow, Abigail L. & Gühnemann, Astrid, 2011. "Personal carbon trading and fuel price increases in the transport sector: an exploratory study of public response in the UK," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 47-70.
    10. Ian W. H. Parry & Kenneth A. Small, 2005. "Does Britain or the United States Have the Right Gasoline Tax?," American Economic Review, American Economic Association, vol. 95(4), pages 1276-1289, September.
    11. McNamara, David & Caulfield, Brian, 2013. "Examining the impact of carbon price changes under a personalised carbon trading scheme for transport," Transport Policy, Elsevier, vol. 30(C), pages 238-253.
    12. Nitzsche, Eric & Tscharaktschiew, Stefan, 2013. "Efficiency of speed limits in cities: A spatial computable general equilibrium assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 56(C), pages 23-48.
    13. Megan H. Accordino and Deepak Rajagopal, 2015. "When a National Cap-and-Trade Policy with Carve-out Provision May Be Preferable to a National CO2 Tax," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    14. de Bovenberg, A Lans & Mooij, Ruud A, 1994. "Environmental Levies and Distortionary Taxation," American Economic Review, American Economic Association, vol. 84(4), pages 1085-1089, September.
    15. Li, Yao & Fan, Jin & Zhao, Dingtao & Wu, Yanrui & Li, Jun, 2016. "Tiered gasoline pricing: A personal carbon trading perspective," Energy Policy, Elsevier, vol. 89(C), pages 194-201.
    16. Xavier Labandeira, Pedro Linares and Miguel Rodriguez, 2009. "An Integrated Approach to Simulate the impacts of Carbon Emissions Trading Schemes," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    17. Pizer, William A., 2002. "Combining price and quantity controls to mitigate global climate change," Journal of Public Economics, Elsevier, vol. 85(3), pages 409-434, September.
    18. Parry, Ian W.H. & Timilsina, Govinda R., 2010. "How should passenger travel in Mexico City be priced?," Journal of Urban Economics, Elsevier, vol. 68(2), pages 167-182, September.
    19. Greg Marsden & Karen Trapenberg Frick & Anthony D May & Elizabeth Deakin, 2012. "Bounded rationality in policy learning amongst cities: lessons from the transport sector," Environment and Planning A, Pion Ltd, London, vol. 44(4), pages 905-920, April.
    20. Özge .Ic{s}legen & Stefan Reichelstein, 2011. "Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis," Management Science, INFORMS, vol. 57(1), pages 21-39, January.
    21. Baumol, William J, 1972. "On Taxation and the Control of Externalities," American Economic Review, American Economic Association, vol. 62(3), pages 307-322, June.
    22. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    23. De Borger, Bruno & Proost, Stef, 2013. "Traffic externalities in cities: The economics of speed bumps, low emission zones and city bypasses," Journal of Urban Economics, Elsevier, vol. 76(C), pages 53-70.
    24. Shanyong Wang & Jin Fan & Dingtao Zhao & Shu Yang & Yuanguang Fu, 2016. "Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model," Transportation, Springer, vol. 43(1), pages 123-143, January.
    25. Shanyong Wang & Jin Fan & Dingtao Zhao & Shu Yang & Yuanguang Fu, 2016. "Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model," Transportation, Springer, vol. 43(1), pages 123-143, January.
    26. Tina Fawcett & Yael Parag, 2010. "An introduction to personal carbon trading," Climate Policy, Taylor & Francis Journals, vol. 10(4), pages 329-338, July.
    27. Halvorsen, Bente & Larsen, Bodil M., 2001. "The flexibility of household electricity demand over time," Resource and Energy Economics, Elsevier, vol. 23(1), pages 1-18, January.
    28. Suzuki, Yoshinori & Pautsch, Gregory R., 2005. "A vehicle replacement policy for motor carriers in an unsteady economy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 463-480, June.
    29. Giblin, S. & McNabola, A., 2009. "Modelling the impacts of a carbon emission-differentiated vehicle tax system on CO2 emissions intensity from new vehicle purchases in Ireland," Energy Policy, Elsevier, vol. 37(4), pages 1404-1411, April.
    30. Hendrik Wolff, 2014. "Keep Your Clunker in the Suburb: Low‐emission Zones and Adoption of Green Vehicles," Economic Journal, Royal Economic Society, vol. 124(578), pages 481-512, August.
    31. Wadud, Zia, 2011. "Personal tradable carbon permits for road transport: Why, why not and who wins?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1052-1065.
    32. Anas, Alex & Timilsina, Govinda R., 2009. "Impacts of policy instruments to reduce congestion and emissions from urban transportation : the case of Sao Paulo, Brazil," Policy Research Working Paper Series 5099, The World Bank.
    33. Fawcett, Tina, 2010. "Personal carbon trading: A policy ahead of its time?," Energy Policy, Elsevier, vol. 38(11), pages 6868-6876, November.
    34. Erdem, Cumhur & Sentürk, Ismail & Simsek, Türker, 2010. "Identifying the factors affecting the willingness to pay for fuel-efficient vehicles in Turkey: A case of hybrids," Energy Policy, Elsevier, vol. 38(6), pages 3038-3043, June.
    35. Goulder, Lawrence H., 2013. "Climate change policy's interactions with the tax system," Energy Economics, Elsevier, vol. 40(S1), pages 3-11.
    36. Michael P Johnson, 2001. "Environmental impacts of urban sprawl: a survey of the literature and proposed research agenda," Environment and Planning A, Pion Ltd, London, vol. 33(4), pages 717-735, April.
    37. Romm, Joseph, 2006. "The car and fuel of the future," Energy Policy, Elsevier, vol. 34(17), pages 2609-2614, November.
    38. Coad, Alex & de Haan, Peter & Woersdorfer, Julia Sophie, 2009. "Consumer support for environmental policies: An application to purchases of green cars," Ecological Economics, Elsevier, vol. 68(7), pages 2078-2086, May.
    39. Fan, Jin & Li, Jun & Wu, Yanrui & Wang, Shanyong & Zhao, Dingtao, 2016. "The effects of allowance price on energy demand under a personal carbon trading scheme," Applied Energy, Elsevier, vol. 170(C), pages 242-249.
    40. He, Dong & Wang, Honglin, 2012. "Dual-track interest rates and the conduct of monetary policy in China," China Economic Review, Elsevier, vol. 23(4), pages 928-947.
    41. Charles Raux & Yves Croissant & Damien Pons, 2015. "Would personal carbon trading reduce travel emissions more effectively than a carbon tax?," Post-Print halshs-01099917, HAL.
    42. Hao, Han & Ou, Xunmin & Du, Jiuyu & Wang, Hewu & Ouyang, Minggao, 2014. "China’s electric vehicle subsidy scheme: Rationale and impacts," Energy Policy, Elsevier, vol. 73(C), pages 722-732.
    43. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 853-883.
    44. Nelson, Tim & Kelley, Simon & Orton, Fiona, 2012. "A literature review of economic studies on carbon pricing and Australian wholesale electricity markets," Energy Policy, Elsevier, vol. 49(C), pages 217-224.
    45. Bertinelli, Luisito & Camacho, Carmen & Zou, Benteng, 2014. "Carbon capture and storage and transboundary pollution: A differential game approach," European Journal of Operational Research, Elsevier, vol. 237(2), pages 721-728.
    46. Narayan, Paresh Kumar & Sharma, Susan Sunila, 2015. "Is carbon emissions trading profitable?," Economic Modelling, Elsevier, vol. 47(C), pages 84-92.
    47. David M Newbery, 1992. "Should Carbon Taxes Be Additional to Other Transport Fuel Taxes?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 49-60.
    48. Bristow, Abigail L. & Wardman, Mark & Zanni, Alberto M. & Chintakayala, Phani K., 2010. "Public acceptability of personal carbon trading and carbon tax," Ecological Economics, Elsevier, vol. 69(9), pages 1824-1837, July.
    49. Tscharaktschiew, Stefan & Hirte, Georg, 2010. "The drawbacks and opportunities of carbon charges in metropolitan areas -- A spatial general equilibrium approach," Ecological Economics, Elsevier, vol. 70(2), pages 339-357, December.
    50. Yihsu Chen & Chung-Li Tseng, 2011. "Inducing Clean Technology in the Electricity Sector: Tradable Permits or Carbon Tax Policies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 169-174.
    51. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    52. Ouchida, Yasunori & Goto, Daisaku, 2014. "Do emission subsidies reduce emission? In the context of environmental R&D organization," Economic Modelling, Elsevier, vol. 36(C), pages 511-516.
    53. Greg Marsden & Karen Trapenberg Frick & Anthony D May & Elizabeth Deakin, 2012. "Bounded Rationality in Policy Learning Amongst Cities: Lessons from the Transport Sector," Environment and Planning A, , vol. 44(4), pages 905-920, April.
    54. Hirte, Georg & Tscharaktschiew, Stefan, 2013. "The optimal subsidy on electric vehicles in German metropolitan areas: A spatial general equilibrium analysis," Energy Economics, Elsevier, vol. 40(C), pages 515-528.
    55. Julie Rozenberg & Stéphane Hallegatte & Baptiste Perrissin-Fabert & Jean-Charles Hourcade, 2013. "Funding low-carbon investments in the absence of a carbon tax," Climate Policy, Taylor & Francis Journals, vol. 13(1), pages 134-141, January.
    56. Alberto M. Zanni & Abigail L. Bristow & Mark Wardman, 2013. "The potential behavioural effect of personal carbon trading: results from an experimental survey," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 2(2), pages 222-243, July.
    57. Charles Raux, 2004. "The Use of Transferable Permits in Transport Policy," Post-Print halshs-00067895, HAL.
    58. Davis, Brian A. & Figliozzi, Miguel A., 2013. "A methodology to evaluate the competitiveness of electric delivery trucks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 8-23.
    59. Carolyn Fischer & Winston Harrington & Ian W.H. Parry, 2007. "Should Automobile Fuel Economy Standards be Tightened?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiao-Bing & Zhu, Lei, 2017. "Strategic carbon taxation and energy pricing under the threat of climate tipping events," Economic Modelling, Elsevier, vol. 60(C), pages 352-363.
    2. Liu, Yang & Han, Liyan & Yin, Ziqiao & Luo, Kongyi, 2017. "A competitive carbon emissions scheme with hybrid fiscal incentives: The evidence from a taxi industry," Energy Policy, Elsevier, vol. 102(C), pages 414-422.
    3. repec:eee:appene:v:209:y:2018:i:c:p:478-488 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:59:y:2016:i:c:p:164-173. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.