IDEAS home Printed from https://ideas.repec.org/p/ags/aaea14/171168.html
   My bibliography  Save this paper

Impact of different bioenergy crop yield estimates on the cellulosic ethanol feedstock mix

Author

Abstract

Although a cellulosic ethanol mandate for 2022 is in place, significant political, economic, and agronomic uncertainty exists surrounding the attainability of the mandate. This paper evaluates the effects of bioenergy crop yield and cost uncertainty on land allocation and the feedstock mix for cellulosic ethanol in the United States. The county-level model focuses on corn, soybeans, and wheat as the field crops and corn stover, wheat straw, switchgrass, and miscanthus as the biomass feedstocks. The economic model allocates land optimally among the alternative crops given a binding cellulosic biofuel mandate. The model is calibrated to 2022 in terms of yield, crop demand, and baseline prices. The bioenergy and commodity prices resulting from a mandate are endogenous to the model. The scenarios simulated differ in terms of bioenergy crop types (switchgrass and miscanthus), bioenergy crop yields, bioenergy production cost, and the cellulosic biofuel mandate ranging from 15 to 60 billion gallons. Our results indicate that the largest proportion of agricultural land dedicated to either switchgrass or miscanthus is found in the Southern Plains and the Southeast. Almost no bioenergy crops are grown in the Midwest across all scenarios. The 15 and 30 billion liter mandates in the high production cost scenarios for switchgrass and in all miscanthus scenarios are covered to 95\% by agricultural residues. Changes in the prices for the three commodities are negligible for low cellulosic ethanol mandates because most of the mandate is met with agricultural residues. The amount of bioenergy crops brought into production at the highest imposed mandate result in price increases ranging from 5% for corn and soybeans to almost 14% for wheat.

Suggested Citation

  • Dumortier, Jerome, 2014. "Impact of different bioenergy crop yield estimates on the cellulosic ethanol feedstock mix," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 171168, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea14:171168
    as

    Download full text from publisher

    File URL: http://purl.umn.edu/171168
    Download Restriction: no

    References listed on IDEAS

    as
    1. Madhu Khanna & Xiaoguang Chen & Haixiao Huang & Hayri Onal, 2011. "Supply of Cellulosic Biofuel Feedstocks and Regional Production Pattern," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 473-480.
    2. Jerome Dumortier & Dermot J. Hayes & Miguel Carriquiry & Fengxia Dong & Xiaodong Du & Amani Elobeid & Jacinto F. Fabiosa & Simla Tokgoz, 2011. "Sensitivity of Carbon Emission Estimates from Indirect Land-Use Change," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, pages 673-673.
    3. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    4. Mindy L. Mallory & Dermot J. Hayes & Bruce A. Babcock, 2011. "Crop-Based Biofuel Production with Acreage Competition and Uncertainty," Land Economics, University of Wisconsin Press, vol. 87(4), pages 610-627.
    5. Marie Walsh & Daniel de la Torre Ugarte & Hosein Shapouri & Stephen Slinsky, 2003. "Bioenergy Crop Production in the United States: Potential Quantities, Land Use Changes, and Economic Impacts on the Agricultural Sector," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 313-333, April.
    6. Babcock, Bruce A. & Marette, Stéphan & Tréguer, David, 2011. "Opportunity for profitable investments in cellulosic biofuels," Energy Policy, Elsevier, vol. 39(2), pages 714-719, February.
    7. Uwe Schneider & Bruce McCarl, 2003. "Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 291-312, April.
    8. Seth Meyer & Wyatt Thompson, 2012. "How Do Biofuel Use Mandates Cause Uncertainty? United States Environmental Protection Agency Cellulosic Waiver Options," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 34(4), pages 570-586.
    9. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    10. Dumortier, Jerome, 2013. "Co-firing in coal power plants and its impact on biomass feedstock availability," Energy Policy, Elsevier, pages 396-405.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    cellulosic ethanol; switchgrass; miscanthus; Land Economics/Use;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea14:171168. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/aaeaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.