IDEAS home Printed from https://ideas.repec.org/p/isu/genstf/201709010700001686.html
   My bibliography  Save this paper

Production and spatial distribution of switchgrass and miscanthus in the United States under uncertainty and sunk cost

Author

Listed:
  • Dumortier, Jerome
  • Kauffman, Nathan
  • Hayes, Dermot J.

Abstract

The U.S. cellulosic biofuel mandate has not been enforced in recent years. Uncertainty surrounding the enforcement of the mandate in addition to high production and harvest cost have contributed to a delay in the widespread planting of bioenergy crops such as switchgrass and miscanthus. Previous literature has shown that under uncertainty and sunk cost, an investment threshold is further increased due to the value associated from holding the investment option. In this paper, we extend the previous literature by applying a real option switching model to bioenergy crop production. First, we calculate the county-level break-even price which triggers a switching away from traditional field crops (corn, soybeans, and wheat) to bioenergy crops under various scenarios differing by commodity prices, production cost and biomass price expectations. We show that the resulting break-even prices at the county-level can be substantially higher than previously estimated due to the inclusion of the option value. In a second step, we identify counties that are most likely to grow switchgrass or miscanthus by simulating a stochastic biomass price over time. Our results highlight two issues: First, switchgrass or miscanthus are not grown in the Midwest under any scenario. Under low agricultural residue removal rates, biomass crops are mostly grown in the Southeast. Second, under the assumption of a high removal rates, bioenergy crops are not grown anywhere in the U.S. since the cellulosic biofuel mandate can be covered by agricultural residues.

Suggested Citation

  • Dumortier, Jerome & Kauffman, Nathan & Hayes, Dermot J., 2017. "Production and spatial distribution of switchgrass and miscanthus in the United States under uncertainty and sunk cost," ISU General Staff Papers 201709010700001686, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genstf:201709010700001686
    as

    Download full text from publisher

    File URL: https://dr.lib.iastate.edu/server/api/core/bitstreams/060b7be5-192e-49fc-af61-ac11d415dd17/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Majd, Saman & Pindyck, Robert S., 1987. "Time to build, option value, and investment decisions," Journal of Financial Economics, Elsevier, vol. 18(1), pages 7-27, March.
    2. Abebayehu Tegene & Keith Wiebe & Betsey Kuhn, 1999. "Irreversible Investment Under Uncertainty: Conservation Easements and the Option to Develop Agricultural Land," Journal of Agricultural Economics, Wiley Blackwell, vol. 50(2), pages 203-219, May.
    3. Nostbakken, Linda, 2006. "Regime switching in a fishery with stochastic stock and price," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 231-241, March.
    4. Seth Meyer & Wyatt Thompson, 2012. "How Do Biofuel Use Mandates Cause Uncertainty? United States Environmental Protection Agency Cellulosic Waiver Options," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 34(4), pages 570-586.
    5. Pacheco-de-Almeida, Goncalo & Zemsky, Peter, 2003. "The Effect of Time-to-Build on Strategic Investment under Uncertainty," RAND Journal of Economics, The RAND Corporation, vol. 34(1), pages 166-182, Spring.
    6. Bar-Ilan, Avner & Strange, William C., 1998. "A model of sequential investment," Journal of Economic Dynamics and Control, Elsevier, vol. 22(3), pages 437-463, March.
    7. Odening, Martin & Mu[ss]hoff, Oliver & Hirschauer, Norbert & Balmann, Alfons, 2007. "Investment under uncertainty--Does competition matter?," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 994-1014, March.
    8. Schatzki, Todd, 2003. "Options, uncertainty and sunk costs:: an empirical analysis of land use change," Journal of Environmental Economics and Management, Elsevier, vol. 46(1), pages 86-105, July.
    9. Jasmina Behan & Kieran McQuinn & Maurice J. Roche, 2006. "Rural Land Use: Traditional Agriculture or Forestry?," Land Economics, University of Wisconsin Press, vol. 82(1), pages 112-123.
    10. Tsekrekos, Andrianos E., 2010. "The effect of mean reversion on entry and exit decisions under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 725-742, April.
    11. Seth Meyer & Wyatt Thompson, 2012. "How Do Biofuel Use Mandates Cause Uncertainty? United States Environmental Protection Agency Cellulosic Waiver Options," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 34(4), pages 570-586.
    12. Steven R. Grenadier, 2002. "Option Exercise Games: An Application to the Equilibrium Investment Strategies of Firms," Review of Financial Studies, Society for Financial Studies, vol. 15(3), pages 691-721.
    13. Madhu Khanna & Xiaoguang Chen & Haixiao Huang & Hayri Onal, 2011. "Supply of Cellulosic Biofuel Feedstocks and Regional Production Pattern," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 473-480.
    14. Price, T. Jeffrey & Wetzstein, Michael E., 1999. "Irreversible Investment Decisions In Perennial Crops With Yield And Price Uncertainty," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 24(1), pages 1-13, July.
    15. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    16. Isik, Murat & Yang, Wanhong, 2004. "An Analysis of the Effects of Uncertainty and Irreversibility on Farmer Participation in the Conservation Reserve Program," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 29(2), pages 1-18, August.
    17. Guilherme B. Martins & Marcos Eugênio da Silva, 2005. "A Real Option Model with Uncertain, Sequential Investment and with Time to Build," Brazilian Review of Finance, Brazilian Society of Finance, vol. 3(2), pages 141-172.
    18. Zhao, Jinhua, 2003. "Irreversible abatement investment under cost uncertainties: tradable emission permits and emissions charges," Journal of Public Economics, Elsevier, vol. 87(12), pages 2765-2789, December.
    19. Babcock, Bruce A. & Marette, Stéphan & Tréguer, David, 2011. "Opportunity for profitable investments in cellulosic biofuels," Energy Policy, Elsevier, vol. 39(2), pages 714-719, February.
    20. Feng Song & Jinhua Zhao & Scott M. Swinton, 2011. "Switching to Perennial Energy Crops Under Uncertainty and Costly Reversibility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 764-779.
    21. Luis Alvarez & Rune Stenbacka, 2003. "Optimal risk adoption: a real options approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(1), pages 123-147, December.
    22. Bar-Ilan, Avner & Strange, William C, 1996. "Investment Lags," American Economic Review, American Economic Association, vol. 86(3), pages 610-622, June.
    23. Jean-Paul Décamps & Thomas Mariotti & Stéphane Villeneuve, 2006. "Irreversible investment in alternative projects," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(2), pages 425-448, June.
    24. Dumortier, Jerome, 2015. "Impact of agronomic uncertainty in biomass production and endogenous commodity prices on cellulosic biofuel feedstock composition," IU SPEA AgEcon Papers 198707, Indiana University, IU School of Public and Environmental Affairs.
    25. Chladna, Zuzana, 2007. "Determination of optimal rotation period under stochastic wood and carbon prices," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1031-1045, May.
    26. Mindy L. Mallory & Dermot J. Hayes & Bruce A. Babcock, 2011. "Crop-Based Biofuel Production with Acreage Competition and Uncertainty," Land Economics, University of Wisconsin Press, vol. 87(4), pages 610-627.
    27. Gonçalo Pacheco-De-Almeida & Peter Zemsky, 2003. "The Effect of Time-to-Build on Strategic Investment under Uncertainty," Post-Print hal-00576375, HAL.
    28. Balikcioglu, Metin & Fackler, Paul L. & Pindyck, Robert S., 2011. "Solving optimal timing problems in environmental economics," Resource and Energy Economics, Elsevier, vol. 33(3), pages 761-768, September.
    29. John V. Leahy, 1993. "Investment in Competitive Equilibrium: The Optimality of Myopic Behavior," The Quarterly Journal of Economics, Oxford University Press, vol. 108(4), pages 1105-1133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majeed, Fahd & Khanna, Madhu & Miao, Ruiqing & Blanc, Elena & Hudiburg, Tara & DeLucia, Evan, 2020. "Designing payments for GHG mitigation to induce low carbon bioenergy production," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304394, Agricultural and Applied Economics Association.
    2. Adkins, Roger & Paxson, Dean, 2019. "Rescaling-contraction with a lower cost technology when revenue declines," European Journal of Operational Research, Elsevier, vol. 277(2), pages 574-586.
    3. Chris B. Zou & Lixia H. Lambert & Josh Everett & Rodney E. Will, 2022. "Response of Surface Runoff and Sediment to the Conversion of a Marginal Grassland to a Switchgrass ( Panicum virgatum ) Bioenergy Feedstock System," Land, MDPI, vol. 11(4), pages 1-15, April.
    4. Dumortier, Jerome & Elobeid, Amani & Carriquiry, Miguel, 2022. "Light-duty vehicle fleet electrification in the United States and its effects on global agricultural markets," Ecological Economics, Elsevier, vol. 200(C).
    5. Sharma, Bijay P. & Khanna, Madhu & Miao, Ruiqing, 2022. "Designing Efficient Payments to Incentivize GHG Mitigation Using Energy Crops," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322361, Agricultural and Applied Economics Association.
    6. Hanson, Eilish R. & Nagler, Amy & Ritten, John & Rashford, Benjamin, 2022. "Farm-Level Economics of Bioenergy in the Upper Missouri River Basin," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2022.
    7. Jerome Dumortier & Amani Elobeid, 2020. "Assessment of Carbon Tax Policies: Implications on U.S. Agricultural Production and Farm Income," Center for Agricultural and Rural Development (CARD) Publications 20-wp606, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    8. Madhu Khanna & Ruiqing Miao, 2022. "Inducing the adoption of emerging technologies for sustainable intensification of food and renewable energy production: insights from applied economics," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 1-23, January.
    9. Jiahong Yuan & Xiaoyu Li & Zilai Sun & Junhu Ruan, 2021. "Will the Adoption of Early Fertigation Techniques Hinder Famers’ Technology Renewal? Evidence from Fresh Growers in Shaanxi, China," Agriculture, MDPI, vol. 11(10), pages 1-17, September.
    10. Burli, Pralhad & Lal, Pankaj & Wolde, Bernabas & Jose, Shibu & Bardhan, Sougata, 2019. "Factors affecting willingness to cultivate switchgrass: Evidence from a farmer survey in Missouri," Energy Economics, Elsevier, vol. 80(C), pages 20-29.
    11. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dumortier, Jerome & Kauffman, Nathan & Hayes, Dermot J., 2015. "Uncertainty and Time-to-Build in Bioenergy Crop Production," ISU General Staff Papers 201501010800001019, Iowa State University, Department of Economics.
    2. Dumortier, Jerome Robert Florian, 2011. "The impact of forest offset credits under a stochastic carbon price on agriculture using a rational expectations and real options framework," ISU General Staff Papers 201101010800001160, Iowa State University, Department of Economics.
    3. Dumortier, Jerome, 2012. "Welfare changes associated with forest carbon offset credits in the United States," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124632, Agricultural and Applied Economics Association.
    4. Dumortier, Jerome, 2015. "Impact of agronomic uncertainty in biomass production and endogenous commodity prices on cellulosic biofuel feedstock composition," IU SPEA AgEcon Papers 198707, Indiana University, IU School of Public and Environmental Affairs.
    5. Taschini, Luca, 2021. "Flexibility premium of emissions permits," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
    6. Jeon, Haejun, 2021. "Investment timing and capacity decisions with time-to-build in a duopoly market," Journal of Economic Dynamics and Control, Elsevier, vol. 122(C).
    7. Michail Chronopoulos & Verena Hagspiel & Stein-Erik Fleten, 2017. "Stepwise investment and capacity sizing under uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 447-472, March.
    8. Luca Di Corato, 2018. "Rural land development under hyperbolic discounting: a real option approach," Letters in Spatial and Resource Sciences, Springer, vol. 11(2), pages 167-182, July.
    9. Fredrik Armerin & Han-Suck Song, 2021. "A framework for modelling cash flow lags," SN Business & Economics, Springer, vol. 1(10), pages 1-13, October.
    10. Gkochari, Christiana C., 2015. "Optimal investment timing in the dry bulk shipping sector," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 102-109.
    11. Luca Corato & Michele Moretto & Sergio Vergalli, 2013. "Land conversion pace under uncertainty and irreversibility: too fast or too slow?," Journal of Economics, Springer, vol. 110(1), pages 45-82, September.
    12. Joachim Gahungu and Yves Smeers, 2012. "A Real Options Model for Electricity Capacity Expansion," RSCAS Working Papers 2012/08, European University Institute.
    13. GAHUNGU, Joachim & SMEERS, Yves, 2011. "A real options model for electricity capacity expansion," LIDAM Discussion Papers CORE 2011044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Dumortier, Jerome, 2014. "Impact of different bioenergy crop yield estimates on the cellulosic ethanol feedstock mix," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 171168, Agricultural and Applied Economics Association.
    15. Jyh-Bang Jou & Tan (Charlene) Lee, 2011. "Mutually exclusive investment with technical uncertainty," Applied Economics, Taylor & Francis Journals, vol. 43(30), pages 4723-4728.
    16. Aïd, René & Federico, Salvatore & Pham, Huyên & Villeneuve, Bertrand, 2015. "Explicit investment rules with time-to-build and uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 240-256.
    17. Kort, Peter M. & Murto, Pauli & Pawlina, Grzegorz, 2010. "Uncertainty and stepwise investment," European Journal of Operational Research, Elsevier, vol. 202(1), pages 196-203, April.
    18. Jean-Paul Décamps & Thomas Mariotti & Stéphane Villeneuve, 2006. "Irreversible investment in alternative projects," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(2), pages 425-448, June.
    19. Rena Sivitanidou, 1999. "Does the Theory of Irreversible Investments Help Explain Movements in Office-Commerical Construction?," Working Paper 8659, USC Lusk Center for Real Estate.
    20. Di Corato, Luca & Hess, Sebastian, 2013. "Farmland Investments in Africa: What’s the Deal?," Working Paper Series 2013:10, Swedish University of Agricultural Sciences, Department Economics.

    More about this item

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genstf:201709010700001686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Curtis Balmer (email available below). General contact details of provider: https://edirc.repec.org/data/deiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.