IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v155y2018icp651-667.html
   My bibliography  Save this article

Bangladesh power supply scenarios on renewables and electricity import

Author

Listed:
  • Das, Anjana
  • Halder, Arideep
  • Mazumder, Rahul
  • Saini, Vinay Kumar
  • Parikh, Jyoti
  • Parikh, Kirit S.

Abstract

Bangladesh, currently a low middle-income economy aspires to become a high middle income country by 2021. To achieve such aspiration, the country will have to ensure adequate power supply for its fast growing economy. Bangladesh lacks energy resources for power generation. This paper explores some of the power supply scenarios with special focus on power imports and higher use of renewables. Using the technology rich, least cost optimization model 'The Integrated MARKAL-EFOM System (TIMES)', the authors developed four possible future power supply scenarios for Bangladesh. These scenarios include an energy security framework (based on the Power System Master Plan (PSMP) 2016 report), a high power import scenario, a scenario with higher use of renewables and a combined high power import - high renewables development scenario. The analysis indicates that the present energy security framework ensures energy security with diversifying fuels used for power generation, however, scenarios with high power imports and a high share of renewables (including the combined scenario) bring down the cost of supplying power along with a reduction in expensive fossil fuel imports while maintaining energy security as fuel sources for power generation still remain diversified.

Suggested Citation

  • Das, Anjana & Halder, Arideep & Mazumder, Rahul & Saini, Vinay Kumar & Parikh, Jyoti & Parikh, Kirit S., 2018. "Bangladesh power supply scenarios on renewables and electricity import," Energy, Elsevier, vol. 155(C), pages 651-667.
  • Handle: RePEc:eee:energy:v:155:y:2018:i:c:p:651-667
    DOI: 10.1016/j.energy.2018.04.169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218307928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 171(C), pages 501-522.
    2. Mondal, Md. Alam Hossain & Denich, Manfred & Vlek, Paul L.G., 2010. "The future choice of technologies and co-benefits of CO2 emission reduction in Bangladesh power sector," Energy, Elsevier, vol. 35(12), pages 4902-4909.
    3. Halder, P.K. & Paul, N. & Joardder, M.U.H. & Sarker, M., 2015. "Energy scarcity and potential of renewable energy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1636-1649.
    4. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Reprint of Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 184(C), pages 1529-1550.
    5. Richard Loulou, 2008. "ETSAP-TIAM: the TIMES integrated assessment model. part II: mathematical formulation," Computational Management Science, Springer, vol. 5(1), pages 41-66, February.
    6. Wright, Evelyn L. & Belt, Juan A.B. & Chambers, Adam & Delaquil, Pat & Goldstein, Gary, 2010. "A scenario analysis of investment options for the Cuban power sector using the MARKAL model," Energy Policy, Elsevier, vol. 38(7), pages 3342-3355, July.
    7. Nikolakakis, Thomas & Chattopadhyay, Deb & Bazilian, Morgan, 2017. "A review of renewable investment and power system operational issues in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 650-658.
    8. Lind, Arne & Rosenberg, Eva & Seljom, Pernille & Espegren, Kari & Fidje, Audun & Lindberg, Karen, 2013. "Analysis of the EU renewable energy directive by a techno-economic optimisation model," Energy Policy, Elsevier, vol. 60(C), pages 364-377.
    9. Pina, André & Silva, Carlos & Ferrão, Paulo, 2011. "Modeling hourly electricity dynamics for policy making in long-term scenarios," Energy Policy, Elsevier, vol. 39(9), pages 4692-4702, September.
    10. Yao, Lixia & Shi, Xunpeng & Andrews-Speed, Philip, 2018. "Conceptualization of energy security in resource-poor economies: The role of the nature of economy," Energy Policy, Elsevier, vol. 114(C), pages 394-402.
    11. Timilsina,Govinda R. & Toman,Michael A. & Karacsonyi,Jorge G. & de Tena Diego,Luca, 2015. "How much could South Asia benefit from regional electricity cooperation and trade ?," Policy Research Working Paper Series 7341, The World Bank.
    12. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    13. Amorim, Filipa & Pina, André & Gerbelová, Hana & Pereira da Silva, Patrícia & Vasconcelos, Jorge & Martins, Victor, 2014. "Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling," Energy, Elsevier, vol. 69(C), pages 104-112.
    14. Howells, M. I. & Alfstad, T. & Victor, D. G. & Goldstein, G. & Remme, U., 2005. "A model of household energy services in a low-income rural African village," Energy Policy, Elsevier, vol. 33(14), pages 1833-1851, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aryanpur, Vahid & Atabaki, Mohammad Saeid & Marzband, Mousa & Siano, Pierluigi & Ghayoumi, Kiarash, 2019. "An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 58-74.
    2. Mohammad Ershadul Karim & Ridoan Karim & Md. Toriqul Islam & Firdaus Muhammad-Sukki & Nurul Aini Bani & Mohd Nabil Muhtazaruddin, 2019. "Renewable Energy for Sustainable Growth and Development: An Evaluation of Law and Policy of Bangladesh," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    3. Laha, Priyanka & Chakraborty, Basab & Østergaard, Poul Alberg, 2020. "Electricity system scenario development of India with import independence in 2030," Renewable Energy, Elsevier, vol. 151(C), pages 627-639.
    4. César Berna-Escriche & Ángel Pérez-Navarro & Alberto Escrivá & Elías Hurtado & José Luis Muñoz-Cobo & María Cristina Moros, 2021. "Methodology and Application of Statistical Techniques to Evaluate the Reliability of Electrical Systems Based on the Use of High Variability Generation Sources," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    5. Tanoto, Yusak & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Reliability-cost trade-offs for electricity industry planning with high variable renewable energy penetrations in emerging economies: A case study of Indonesia’s Java-Bali grid," Energy, Elsevier, vol. 227(C).
    6. Nikolaos E. Koltsaklis & Athanasios S. Dagoumas, 2018. "Transmission Expansion and Electricity Trade: A Case Study of the Greek Power System," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 64-71.
    7. Aminul Islam & Mohammad Tofayal Ahmed & Md Alam Hossain Mondal & Md. Rabiul Awual & Minhaj Uddin Monir & Kamrul Islam, 2021. "A snapshot of coal‐fired power generation in Bangladesh: A demand–supply outlook," Natural Resources Forum, Blackwell Publishing, vol. 45(2), pages 157-182, May.
    8. Luo, Shihua & Hu, Weihao & Liu, Wen & Liu, Zhou & Huang, Qi & Chen, Zhe, 2022. "Flexibility enhancement measures under the COVID-19 pandemic – A preliminary comparative analysis in Denmark, the Netherlands, and Sichuan of China," Energy, Elsevier, vol. 239(PC).
    9. Muntasir Murshed, 2020. "Electricity conservation opportunities within private university campuses in Bangladesh," Energy & Environment, , vol. 31(2), pages 256-274, March.
    10. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    11. Gyanwali, Khem & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Representing hydropower in the dynamic power sector model and assessing clean energy deployment in the power generation mix of Nepal," Energy, Elsevier, vol. 202(C).
    12. Ridoan Karim & Firdaus Muhammad-Sukki & Mina Hemmati & Md Shah Newaz & Haroon Farooq & Mohd Nabil Muhtazaruddin & Muhammad Zulkipli & Jorge Alfredo Ardila-Rey, 2020. "RETRACTED: Paving towards Strategic Investment Decision: A SWOT Analysis of Renewable Energy in Bangladesh," Sustainability, MDPI, vol. 12(24), pages 1-30, December.
    13. Rashiqa Abdul Salam & Khuram Pervez Amber & Naeem Iqbal Ratyal & Mehboob Alam & Naveed Akram & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2020. "An Overview on Energy and Development of Energy Integration in Major South Asian Countries: The Building Sector," Energies, MDPI, vol. 13(21), pages 1-37, November.
    14. Bablu Kumar Dhar & Alessandro Stasi & Jesper Ole Döpping & Md Abu Issa Gazi & Jakhongir Shaturaev & Sabrina Maria Sarkar, 2022. "Mediating Role of Strategic Flexibility Between Leadership Styles on Strategic Execution: A Study on Bangladeshi Private Enterprises," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(3), pages 409-420, September.
    15. Gulagi, Ashish & Ram, Manish & Solomon, A.A. & Khan, Musharof & Breyer, Christian, 2020. "Current energy policies and possible transition scenarios adopting renewable energy: A case study for Bangladesh," Renewable Energy, Elsevier, vol. 155(C), pages 899-920.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauleón, Ignacio, 2019. "Optimizing individual renewable energies roadmaps: Criteria, methods, and end targets," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Pina, André & Silva, Carlos A. & Ferrão, Paulo, 2013. "High-resolution modeling framework for planning electricity systems with high penetration of renewables," Applied Energy, Elsevier, vol. 112(C), pages 215-223.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Liu, Xi & Du, Huibin & Brown, Marilyn A. & Zuo, Jian & Zhang, Ning & Rong, Qian & Mao, Guozhu, 2018. "Low-carbon technology diffusion in the decarbonization of the power sector: Policy implications," Energy Policy, Elsevier, vol. 116(C), pages 344-356.
    5. Reyseliani, Nadhilah & Hidayatno, Akhmad & Purwanto, Widodo Wahyu, 2022. "Implication of the Paris agreement target on Indonesia electricity sector transition to 2050 using TIMES model," Energy Policy, Elsevier, vol. 169(C).
    6. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    7. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
    8. Vaillancourt, Kathleen & Bahn, Olivier & Frenette, Erik & Sigvaldason, Oskar, 2017. "Exploring deep decarbonization pathways to 2050 for Canada using an optimization energy model framework," Applied Energy, Elsevier, vol. 195(C), pages 774-785.
    9. Pina, André & Silva, Carlos & Ferrão, Paulo, 2011. "Modeling hourly electricity dynamics for policy making in long-term scenarios," Energy Policy, Elsevier, vol. 39(9), pages 4692-4702, September.
    10. Mertens, Tim & Poncelet, Kris & Duerinck, Jan & Delarue, Erik, 2020. "Representing cross-border trade of electricity in long-term energy-system optimization models with a limited geographical scope," Applied Energy, Elsevier, vol. 261(C).
    11. Amorim, Filipa & Pina, André & Gerbelová, Hana & Pereira da Silva, Patrícia & Vasconcelos, Jorge & Martins, Victor, 2014. "Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling," Energy, Elsevier, vol. 69(C), pages 104-112.
    12. Rosenberg, Eva & Lind, Arne & Espegren, Kari Aamodt, 2013. "The impact of future energy demand on renewable energy production – Case of Norway," Energy, Elsevier, vol. 61(C), pages 419-431.
    13. Pfenninger, Stefan, 2017. "Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability," Applied Energy, Elsevier, vol. 197(C), pages 1-13.
    14. Kristine Grimsrud & Cathrine Hagem & Kristina Haaskjold & Henrik Lindhjem & Megan Nowell, 2024. "Spatial Trade-Offs in National Land-Based Wind Power Production in Times of Biodiversity and Climate Crises," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(2), pages 401-436, February.
    15. Marcin Pluta & Artur Wyrwa & Janusz Zyśk & Wojciech Suwała & Maciej Raczyński, 2023. "Scenario Analysis of the Development of the Polish Power System towards Achieving Climate Neutrality in 2050," Energies, MDPI, vol. 16(16), pages 1-25, August.
    16. Seljom, Pernille & Tomasgard, Asgeir, 2017. "The impact of policy actions and future energy prices on the cost-optimal development of the energy system in Norway and Sweden," Energy Policy, Elsevier, vol. 106(C), pages 85-102.
    17. Mirjat, Nayyar Hussain & Uqaili, Mohammad Aslam & Harijan, Khanji & Valasai, Gordhan Das & Shaikh, Faheemullah & Waris, M., 2017. "A review of energy and power planning and policies of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 110-127.
    18. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    19. Grimsrud, Kristine & Hagem, Cathrine & Lind, Arne & Lindhjem, Henrik, 2021. "Efficient spatial distribution of wind power plants given environmental externalities due to turbines and grids," Energy Economics, Elsevier, vol. 102(C).
    20. Seljom, Pernille & Lindberg, Karen Byskov & Tomasgard, Asgeir & Doorman, Gerard & Sartori, Igor, 2017. "The impact of Zero Energy Buildings on the Scandinavian energy system," Energy, Elsevier, vol. 118(C), pages 284-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:155:y:2018:i:c:p:651-667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.