IDEAS home Printed from https://ideas.repec.org/e/c/pmi127.html
   My authors  Follow this author

James Mitchell

Not to be confused with: James L. Mitchell

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:

    Mentioned in:

    1. Density Forecasts and Density Realizations
      by Francis Diebold in No Hesitations on 2020-08-10 18:53:00
  1. Ida Wolden Bache & Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2009. "Combining VAR and DSGE forecast densities," Working Paper 2009/23, Norges Bank.

    Mentioned in:

    1. DSGE models and forecasting
      by Christian Zimmermann in NEP-DGE blog on 2009-12-21 06:35:25

Wikipedia or ReplicationWiki mentions

(Only mentions on Wikipedia that link back to a page on a RePEc service)
  1. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.

    Mentioned in:

    1. Combining forecast densities from VARs with uncertain instabilities (Journal of Applied Econometrics 2010) in ReplicationWiki ()
  2. James Mitchell & Kenneth F. Wallis, 2011. "Evaluating density forecasts: forecast combinations, model mixtures, calibration and sharpness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 1023-1040, September.

    Mentioned in:

    1. Evaluating density forecasts: forecast combinations, model mixtures, calibration and sharpness (Journal of Applied Econometrics 2011) in ReplicationWiki ()

Working papers

  1. Edward S. Knotek & James Mitchell & Mathieu Pedemonte & Taylor Shiroff, 2024. "The Effects of Interest Rate Increases on Consumers' Inflation Expectations: The Roles of Informedness and Compliance," Working Papers 24-01R, Federal Reserve Bank of Cleveland, revised 05 Jun 2025.

    Cited by:

    1. Dräger, Lena & Dalloul, Ami & Nghiem, Giang, 2024. "Anchoring Household's Inflation Expectations when Inflation is High," VfS Annual Conference 2024 (Berlin): Upcoming Labor Market Challenges 302397, Verein für Socialpolitik / German Economic Association.

  2. James Mitchell & Saeed Zaman, 2023. "The Distributional Predictive Content of Measures of Inflation Expectations," Working Papers 23-31, Federal Reserve Bank of Cleveland.

    Cited by:

    1. Carola Binder & Rupal Kamdar & Jane M. Ryngaert, 2024. "Partisan Expectations and COVID-Era Inflation," NBER Working Papers 32650, National Bureau of Economic Research, Inc.

  3. Gary Koop & Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon & Ping Wu, 2023. "Incorporating Short Data into Large Mixed-Frequency VARs for Regional Nowcasting," Working Papers 23-09, Federal Reserve Bank of Cleveland.

    Cited by:

    1. Luca Barbaglia & Lorenzo Frattarolo & Niko Hauzenberger & Dominik Hirschbuehl & Florian Huber & Luca Onorante & Michael Pfarrhofer & Luca Tiozzo Pezzoli, 2024. "Nowcasting economic activity in European regions using a mixed-frequency dynamic factor model," Papers 2401.10054, arXiv.org.
    2. Josh Martin & Rebecca Riley, 2025. "Productivity measurement: Reassessing the production function from micro to macro," Journal of Economic Surveys, Wiley Blackwell, vol. 39(1), pages 246-279, February.

  4. Ilias Filippou & James Mitchell & My T. Nguyen, 2023. "The FOMC versus the Staff: Do Policymakers Add Value in Their Tales?," Working Papers 23-20, Federal Reserve Bank of Cleveland.

    Cited by:

    1. Adämmer, Philipp & Prüser, Jan & Schüssler, Rainer A., 2025. "Forecasting macroeconomic tail risk in real time: Do textual data add value?," International Journal of Forecasting, Elsevier, vol. 41(1), pages 307-320.

  5. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022. "Reconciled Estimates of Monthly GDP in the US," Working Papers 22-01, Federal Reserve Bank of Cleveland.

    Cited by:

    1. Florens Odendahl & Barbara Rossi & Tatevik Sekhposyan, 2021. "Evaluating forecast performance with state dependence," Economics Working Papers 1800, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Chan, Joshua C.C. & Poon, Aubrey & Zhu, Dan, 2023. "High-dimensional conditionally Gaussian state space models with missing data," Journal of Econometrics, Elsevier, vol. 236(1).
    3. Abdullah M Almarashi & Muhammad Daniyal & Farrukh Jamal, 2024. "Modelling the GDP of KSA using linear and non-linear NNAR and hybrid stochastic time series models," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-16, February.
    4. Ana Beatriz Galvão & James Mitchell, 2023. "Real‐Time Perceptions of Historical GDP Data Uncertainty," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 457-481, June.
    5. Michael Zhemkov, 2022. "Assessment of Monthly GDP Growth Using Temporal Disaggregation Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 81(2), pages 79-104, June.
    6. Bing Han & Muhammad Rizwanullah & Yane Luo & Rahim Atif, 2024. "The role of cross-border E-commerce on the export of goods and services," Electronic Commerce Research, Springer, vol. 24(2), pages 1367-1384, June.
    7. Ash, Thomas & Nickelsburg, Jerry, 2024. "Works like a Sahm: Recession indicators and the Sahm rule," Economics Letters, Elsevier, vol. 242(C).
    8. Blagov, Boris & Krause, Clara & Schmidt, Torsten & Exß, Franziska & Heinisch, Katja & Holtemöller, Oliver, 2024. "Frühzeitige Ermittlung stabiler Ergebnisse zum Bruttoinlandsprodukt bzw. realen Wirtschaftswachstum und der Bruttowertschöpfung auf Länderebene. Endbericht," RWI Projektberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, number 296879, March.
    9. Wu, Ping, 2024. "Should I open to forecast? Implications from a multi-country unobserved components model with sparse factor stochastic volatility," International Journal of Forecasting, Elsevier, vol. 40(3), pages 903-917.

  6. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022. "Using hierarchical aggregation constraints to nowcast regional economic aggregates," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-04, Economic Statistics Centre of Excellence (ESCoE).

    Cited by:

    1. Robert Lehmann, 2024. "A real-time regional accounts database for Germany with applications to GDP revisions and nowcasting," Empirical Economics, Springer, vol. 67(2), pages 817-838, August.
    2. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    3. Luca Barbaglia & Lorenzo Frattarolo & Niko Hauzenberger & Dominik Hirschbuehl & Florian Huber & Luca Onorante & Michael Pfarrhofer & Luca Tiozzo Pezzoli, 2024. "Nowcasting economic activity in European regions using a mixed-frequency dynamic factor model," Papers 2401.10054, arXiv.org.

  7. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022. "Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates," Working Papers 22-06, Federal Reserve Bank of Cleveland.

    Cited by:

    1. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.

  8. James Mitchell & Aubrey Poon & Dan Zhu, 2022. "Constructing Density Forecasts from Quantile Regressions: Multimodality in Macro-Financial Dynamics," Working Papers 22-12R, Federal Reserve Bank of Cleveland, revised 11 Apr 2023.

    Cited by:

    1. Gloria Gonzalez-Rivera & Vladimir Rodriguez-Caballero & Esther Ruiz, 2023. "Expecting the unexpected: Stressed scenarios for economic growth," Working Papers 202314, University of California at Riverside, Department of Economics.
    2. Matteo Mogliani & Florens Odendahl, 2025. "Density forecast transformations," Working Papers 2511, Banco de España.
    3. Michal Franta & Jan Vlcek, 2025. "Inflation at Risk: The Czech Case," Working Papers 2025/8, Czech National Bank, Research and Statistics Department.
    4. Matteo Iacopini & Aubrey Poon & Luca Rossini & Dan Zhu, 2022. "Bayesian Mixed-Frequency Quantile Vector Autoregression: Eliciting tail risks of Monthly US GDP," Papers 2209.01910, arXiv.org.

  9. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2021. "Nowcasting 'true' monthly US GDP during the pandemic," CAMA Working Papers 2021-14, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

    Cited by:

    1. Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," ERSA Working Paper Series, Economic Research Southern Africa, vol. 0.
    2. Paul Ho, 2021. "Forecasting in the Absence of Precedent," Working Paper 21-10, Federal Reserve Bank of Richmond.

  10. James Mitchell & Martin Weale, 2021. "Censored Density Forecasts: Production and Evaluation," Working Papers 21-12R, Federal Reserve Bank of Cleveland, revised 16 Aug 2022.

    Cited by:

    1. Labonne, Paul, 2025. "Asymmetric uncertainty: Nowcasting using skewness in real-time data," International Journal of Forecasting, Elsevier, vol. 41(1), pages 229-250.
    2. Allen, Sam & Koh, Jonathan & Segers, Johan & Ziegel, Johanna, 2024. "Tail calibration of probabilistic forecasts," LIDAM Discussion Papers ISBA 2024018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

  11. Galvão, Ana Beatriz & Mitchell, James, 2021. "Communicating Data Uncertainty: Multi-Wave Experimental Evidence for U.K. GDP," CEPR Discussion Papers 16417, C.E.P.R. Discussion Papers.

    Cited by:

    1. Johnny Runge, 2021. "Communicating Data Uncertainty on GDP and Unemployment: Interviews with the UK Public," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2021-07, Economic Statistics Centre of Excellence (ESCoE).

  12. Ana Beatriz Galvão & James Mitchell & Johnny Runge, 2019. "Communicating Data Uncertainty: Experimental Evidence for U.K. GDP," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-20, Economic Statistics Centre of Excellence (ESCoE).

    Cited by:

    1. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    2. Johnny Runge & Nathan Hudson-Sharp, 2020. "Public Understanding of Economics and Economic Statistics," Economic Statistics Centre of Excellence (ESCoE) Occasional Papers ESCOE-OP-03, Economic Statistics Centre of Excellence (ESCoE).

  13. Ana Beatriz Galvão & James Mitchell, 2019. "Measuring Data Uncertainty: An Application using the Bank of England's "Fan Charts" for Historical GDP Growth," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-08, Economic Statistics Centre of Excellence (ESCoE).

    Cited by:

    1. Knüppel, Malte & Krüger, Fabian & Pohle, Marc-Oliver, 2022. "Score-based calibration testing for multivariate forecast distributions," Discussion Papers 50/2022, Deutsche Bundesbank.
    2. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    3. Nikoleta Anesti & Ana Beatriz Galvão & Silvia Miranda‐Agrippino, 2022. "Uncertain Kingdom: Nowcasting Gross Domestic Product and its revisions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 42-62, January.
    4. Joshy Easaw & Christian Grimme, 2021. "The Impact of Aggregate Uncertainty on Firm-Level Uncertainty," CESifo Working Paper Series 8934, CESifo.

  14. Gary Koop & Stuart McIntyre & James Mitchell, 2018. "UK Regional Nowcasting using a Mixed Frequency Vector Autoregressive Model," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-07, Economic Statistics Centre of Excellence (ESCoE).

    Cited by:

    1. Tony Chernis & Calista Cheung & Gabriella Velasco, 2017. "A Three-Frequency Dynamic Factor Model for Nowcasting Canadian Provincial GDP Growth," Discussion Papers 17-8, Bank of Canada.
    2. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2018. "Regional Output Growth in the United Kingdom: More Timely and Higher Frequency Estimates, 1970-2017," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-14, Economic Statistics Centre of Excellence (ESCoE).
    3. Concha Artola & María Gil & Javier J. Pérez & Alberto Urtasun & Alejandro Fiorito & Diego Vila, 2018. "Monitoring the Spanish economy from a regional perspective: main elements of analysis," Occasional Papers 1809, Banco de España.

  15. Stephen Wright & James Mitchell & Donald Robertson, 2018. "R2 bounds for predictive models: what univariate properties tell us about multivariate predictability," Birkbeck Working Papers in Economics and Finance 1804, Birkbeck, Department of Economics, Mathematics & Statistics.

    Cited by:

    1. Julien Champagne & Guillaume Poulin‐Bellisle & Rodrigo Sekkel, 2020. "Introducing the Bank of Canada staff economic projections database," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 114-129, January.
    2. Duc Do, Nguyen, 2024. "Money/asset ratio as a predictor of inflation," The Quarterly Review of Economics and Finance, Elsevier, vol. 97(C).
    3. Mihaela-Eugenia VASILACHE, 2018. "Forecasting the Trend of Art Market," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 6(1), pages 82-93, June.
    4. Bo Zhang & Joshua C.C. Chan & Jamie L. Cross, 2018. "Stochastic Volatility Models with ARMA Innovations: An Application to G7 Inflation Forecasts," CAMA Working Papers 2018-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    5. Tommaso Proietti, 2021. "Predictability, real time estimation, and the formulation of unobserved components models," Econometric Reviews, Taylor & Francis Journals, vol. 40(5), pages 433-454, April.
    6. Ana Beatriz Galvão & James Mitchell, 2019. "Measuring Data Uncertainty: An Application using the Bank of England's "Fan Charts" for Historical GDP Growth," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-08, Economic Statistics Centre of Excellence (ESCoE).
    7. Nguyen Duc Do, 2025. "Using a Wage–Price‐Setting Model to Forecast US Inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 803-832, March.

  16. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2018. "Regional Output Growth in the United Kingdom: More Timely and Higher Frequency Estimates, 1970-2017," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-14, Economic Statistics Centre of Excellence (ESCoE).

    Cited by:

    1. Florian, Huber & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2021. "Nowcasting in a Pandemic using Non-Parametric Mixed Frequency VARs," JRC Working Papers in Economics and Finance 2021-01, Joint Research Centre, European Commission.
    2. Tony Chernis & Calista Cheung & Gabriella Velasco, 2017. "A Three-Frequency Dynamic Factor Model for Nowcasting Canadian Provincial GDP Growth," Discussion Papers 17-8, Bank of Canada.
    3. Meredith M. Paker, 2020. "The Jobless Recovery After the 1980-1981 UK Recession," Oxford Economic and Social History Working Papers _182, University of Oxford, Department of Economics.
    4. Deborah Gefang & Gary Koop & Aubrey Poon, "undated". "Computationally Efficient Inference in Large Bayesian Mixed Frequency VARs," Discussion Papers in Economics 20/02, Division of Economics, School of Business, University of Leicester.
    5. Sensier, Marianne & Devine, Fiona, 2020. "Understanding Regional Economic Performance And Resilience In The Uk: Trends Since The Global Financial Crisis," National Institute Economic Review, National Institute of Economic and Social Research, vol. 253, pages 18-28, August.
    6. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
    7. María Gil & Danilo Leiva-Leon & Javier J. Pérez & Alberto Urtasun, 2019. "An application of dynamic factor models to nowcast regional economic activity in Spain," Occasional Papers 1904, Banco de España.

  17. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.

    Cited by:

    1. Nalan Basturk & Agnieszka Borowska & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2018. "Forecast Density Combinations of Dynamic Models and Data Driven Portfolio Strategies," Working Paper 2018/10, Norges Bank.
    2. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    3. Michael K. Adjemian & Valentina G. Bruno & Michel A. Robe, 2020. "Incorporating Uncertainty into USDA Commodity Price Forecasts," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 696-712, March.
    4. Kenichiro McAlinn & Kosaku Takanashi, 2019. "Mean-shift least squares model averaging," Papers 1912.01194, arXiv.org.
    5. David Kohns & Tibor Szendrei, 2020. "Horseshoe Prior Bayesian Quantile Regression," Papers 2006.07655, arXiv.org, revised Mar 2021.
    6. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    7. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    8. Knüppel, Malte & Krüger, Fabian, 2019. "Forecast uncertainty, disagreement, and the linear pool," Discussion Papers 28/2019, Deutsche Bundesbank.
    9. K=osaku Takanashi & Kenichiro McAlinn, 2019. "Equivariant online predictions of non-stationary time series," Papers 1911.08662, arXiv.org, revised Jun 2023.
    10. Yuru Sun & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Gael M. Martin, 2023. "Optimal probabilistic forecasts for risk management," Papers 2303.01651, arXiv.org.
    11. Roberto Casarin & Stefano Grassi & Francesco Ravazzollo & Herman K. van Dijk, 2019. "Forecast Density Combinations with Dynamic Learning for Large Data Sets in Economics and Finance," Tinbergen Institute Discussion Papers 19-025/III, Tinbergen Institute.

  18. Nicholas Fawcett & George Kapetanios & James Mitchell & Simon Price, 2014. "Generalised density forecast combinations," Bank of England working papers 492, Bank of England.

    Cited by:

    1. Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
    2. Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021. "Forecasting Swiss exports using Bayesian forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
    3. Jessup, Sébastien & Mailhot, Mélina & Pigeon, Mathieu, 2025. "Uncertainty in heteroscedastic Bayesian model averaging," Insurance: Mathematics and Economics, Elsevier, vol. 121(C), pages 63-78.
    4. Tony Chernis & Gary Koop & Emily Tallman & Mike West, 2024. "Decision synthesis in monetary policy," Papers 2406.03321, arXiv.org, revised Feb 2025.
    5. Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2020. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Papers 2012.11649, arXiv.org, revised Jun 2022.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Daniele Bianchi & Kenichiro McAlinn, 2018. "Large-Scale Dynamic Predictive Regressions," Papers 1803.06738, arXiv.org.
    8. Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Andres Ramirez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Monash Econometrics and Business Statistics Working Papers 33/20, Monash University, Department of Econometrics and Business Statistics.
    9. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    10. Kenichiro McAlinn & Kosaku Takanashi, 2019. "Mean-shift least squares model averaging," Papers 1912.01194, arXiv.org.
    11. Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
    12. A. Ford Ramsey & Yong Liu, 2023. "Linear pooling of potentially related density forecasts in crop insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(3), pages 769-788, September.
    13. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    14. Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2019. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Working Paper 2019/2, Norges Bank.
    15. Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance," PIER Working Paper Archive 14-034, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    16. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    17. Knüppel, Malte & Krüger, Fabian, 2019. "Forecast uncertainty, disagreement, and the linear pool," Discussion Papers 28/2019, Deutsche Bundesbank.
    18. Pauwels, Laurent & Radchenko, Peter & Vasnev, Andrey, 2020. "Higher Moment Constraints for Predictive Density Combinations," Working Papers BAWP-2020-01, University of Sydney Business School, Discipline of Business Analytics.
    19. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2015. "Bayesian nonparametric calibration and combination of predictive distributions," Working Paper 2015/03, Norges Bank.
    20. Emilio Zanetti Chini, 2018. "Forecaster’s utility and forecasts coherence," DEM Working Papers Series 145, University of Pavia, Department of Economics and Management.
    21. Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
    22. Roberto Casarin & Giulia Mantoan & Francesco Ravazzolo, 2016. "Bayesian Calibration of Generalized Pools of Predictive Distributions," Econometrics, MDPI, vol. 4(1), pages 1-24, March.
    23. Pietro Giorgio Lovaglio, 2025. "Cross‐Learning With Panel Data Modeling for Stacking and Forecast Time Series Employment in Europe," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 753-780, March.
    24. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
    25. Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
    26. Stavroula P. Fameliti & Vasiliki D. Skintzi, 2020. "Predictive ability and economic gains from volatility forecast combinations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 200-219, March.
    27. Roberto Casarin & Fabrizio Leisen & German Molina & Enrique ter Horst, 2014. "A Bayesian Beta Markov Random Field Calibration of the Term Structure of Implied Risk Neutral Densities," Papers 1409.1956, arXiv.org.
    28. K=osaku Takanashi & Kenichiro McAlinn, 2019. "Equivariant online predictions of non-stationary time series," Papers 1911.08662, arXiv.org, revised Jun 2023.
    29. Zanetti Chini, Emilio, 2025. "Judgment can spur long memory," Journal of Economic Dynamics and Control, Elsevier, vol. 170(C).
    30. McAdam, Peter & Warne, Anders, 2020. "Density forecast combinations: the real-time dimension," Working Paper Series 2378, European Central Bank.
    31. Szabolcs Deák & Paul Levine & Afrasiab Mirza & Joseph Pearlman, 2019. "Designing Robust Monetary Policy Using Prediction Pools," School of Economics Discussion Papers 1219, School of Economics, University of Surrey.
    32. Yi-Ting Chen & Chu-An Liu, 2021. "Model Averaging for Asymptotically Optimal Combined Forecasts," IEAS Working Paper : academic research 21-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    33. Taylor, James W. & Jeon, Jooyoung, 2018. "Probabilistic forecasting of wave height for offshore wind turbine maintenance," European Journal of Operational Research, Elsevier, vol. 267(3), pages 877-890.
    34. Roberto Casarin, 2014. "A Note on Tractable State-Space Model for Symmetric Positive-Definite Matrices," Working Papers 2014:23, Department of Economics, University of Venice "Ca' Foscari".
    35. Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2019. "Does a financial accelerator improve forecasts during financial crises? Evidence from Japan with prediction-pooling methods," Journal of Asian Economics, Elsevier, vol. 60(C), pages 45-68.
    36. Pauwels, Laurent L. & Vasnev, Andrey L., 2016. "A note on the estimation of optimal weights for density forecast combinations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 391-397.
    37. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    38. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    39. Ruben Loaiza-Maya & Gael M Martin & David T. Frazier, 2020. "Focused Bayesian Prediction," Monash Econometrics and Business Statistics Working Papers 1/20, Monash University, Department of Econometrics and Business Statistics.
    40. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    41. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    42. McAlinn, Kenichiro & West, Mike, 2019. "Dynamic Bayesian predictive synthesis in time series forecasting," Journal of Econometrics, Elsevier, vol. 210(1), pages 155-169.
    43. Berrisch, Jonathan & Ziel, Florian, 2023. "CRPS learning," Journal of Econometrics, Elsevier, vol. 237(2).

  19. James Mitchell & George Kapetanios & Yongcheol Shin, 2012. "A Nonlinear Panel Data Model of Cross-Sectional Dependence," Discussion Papers in Economics 12/01, Division of Economics, School of Business, University of Leicester.

    Cited by:

    1. Erik Frohm & Vanessa Gunnella, 2021. "Spillovers in global production networks," Review of International Economics, Wiley Blackwell, vol. 29(3), pages 663-680, August.
    2. Nicholas Fawcett & George Kapetanios & James Mitchell & Simon Price, 2014. "Generalised density forecast combinations," Bank of England working papers 492, Bank of England.
    3. Orea, Luis & Álvarez, Inmaculada C., 2019. "A new stochastic frontier model with cross-sectional effects in both noise and inefficiency terms," Journal of Econometrics, Elsevier, vol. 213(2), pages 556-577.
    4. Eunju Hwang & Dong Wan Shin, 2017. "Stationary bootstrapping for common mean change detection in cross-sectionally dependent panels," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 767-787, November.
    5. Saptorshee Kanto Chakraborty & Massimiliano Mazzanti, 2021. "Renewable Electricity and Economic Growth relationship in the long run: panel data econometric evidence from the OECD," SEEDS Working Papers 0421, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Apr 2021.
    6. Sinem Hacıoğlu Hoke & George Kapetanios, 2021. "Common correlated effect cross‐sectional dependence corrections for nonlinear conditional mean panel models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 125-150, January.
    7. Yang, Qin & Du, Qiang & Razzaq, Asif & Shang, Yunfeng, 2022. "How volatility in green financing, clean energy, and green economic practices derive sustainable performance through ESG indicators? A sectoral study of G7 countries," Resources Policy, Elsevier, vol. 75(C).
    8. Efthymios G. Tsionas & Panayotis G. Michaelides, 2016. "A Spatial Stochastic Frontier Model with Spillovers: Evidence for Italian Regions," Scottish Journal of Political Economy, Scottish Economic Society, vol. 63(3), pages 243-257, July.
    9. Frohm, Erik & Gunnella, Vanessa, 2017. "Sectoral interlinkages in global value chains: spillovers and network effects," Working Paper Series 2064, European Central Bank.
    10. Shuddhasattwa Rafiq & Sudharshan Reddy Paramati & Md. Samsul Alam & Khalid Hafeez & Muhammad Shafiullah, 2025. "Does institutional quality matter for renewable energy promotion in OECD economies?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 30(1), pages 477-492, January.
    11. Christis Katsouris, 2024. "Robust Estimation in Network Vector Autoregression with Nonstationary Regressors," Papers 2401.04050, arXiv.org.
    12. Shuddhasattwa Rafiq & Ruhul Salim & Nicholas Apergis, 2016. "Agriculture, trade openness and emissions: an empirical analysis and policy options," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 60(3), pages 348-365, July.
    13. Rafiq, Shuddhasattwa & Salim, Ruhul & Nielsen, Ingrid, 2016. "Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies," Energy Economics, Elsevier, vol. 56(C), pages 20-28.
    14. Shuddhasattwa Rafiq & Ruhul Salim & Pasquale M Sgro, 2018. "Energy, unemployment and trade," Applied Economics, Taylor & Francis Journals, vol. 50(47), pages 5122-5134, October.
    15. Gunnella, Vanessa & Al-Haschimi, Alexander & Benkovskis, Konstantins & Chiacchio, Francesco & de Soyres, François & Di Lupidio, Benedetta & Fidora, Michael & Franco-Bedoya, Sebastian & Frohm, Erik & G, 2019. "The impact of global value chains on the euro area economy," Occasional Paper Series 221, European Central Bank.
    16. Tong, Howell, 2015. "Threshold models in time series analysis—Some reflections," Journal of Econometrics, Elsevier, vol. 189(2), pages 485-491.
    17. Christis Katsouris, 2023. "Estimation and Inference in Threshold Predictive Regression Models with Locally Explosive Regressors," Papers 2305.00860, arXiv.org, revised May 2023.
    18. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.

  20. James Mitchell & Richard J. Smith & Martin R. Weale, 2011. "Efficient Aggregation of Panel Qualitative Survey Data," Discussion Papers in Economics 11/53, Division of Economics, School of Business, University of Leicester.

    Cited by:

    1. Fornaro, Paolo, 2016. "Predicting Finnish economic activity using firm-level data," International Journal of Forecasting, Elsevier, vol. 32(1), pages 10-19.
    2. Alex Botsis & Kevin Lee, 2022. "Nowcasting Using Firm-Level Survey Data; Tracking UK Output Fluctuations and Recessionary Events," Economic Statistics Centre of Excellence (ESCoE) Technical Reports ESCOE-TR-20, Economic Statistics Centre of Excellence (ESCoE).
    3. Kevin Lee & Michael Mahony & Paul Mizen, 2020. "The CBI Suite of Business Surveys," Economic Statistics Centre of Excellence (ESCoE) Technical Reports ESCOE-TR-08, Economic Statistics Centre of Excellence (ESCoE).

  21. Anthony Garratt & James Mitchell & Shaun P. Vahey, 2011. "Measuring Output Gap Nowcast Uncertainty," CAMA Working Papers 2011-16, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

    Cited by:

    1. Florian Eckert & Nina Mühlebach, 2021. "Global and Local Components of Output Gaps," KOF Working papers 21-497, KOF Swiss Economic Institute, ETH Zurich.
    2. Yu-Fan Huang & Sui Luo, 2018. "Potential output and inflation dynamics after the Great Recession," Empirical Economics, Springer, vol. 55(2), pages 495-517, September.
    3. Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2015. "EuroMInd-D: A Density Estimate of Monthly Gross Domestic Product for the Euro Area," CREATES Research Papers 2015-12, Department of Economics and Business Economics, Aarhus University.
    4. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    5. Travis J. Berge, 2023. "Time-Varying Uncertainty of the Federal Reserve's Output Gap Estimate," The Review of Economics and Statistics, MIT Press, vol. 105(5), pages 1191-1206, September.
    6. Tino Berger & James Morley & Benjamin Wong, 2020. "Nowcasting the Output Gap," CAMA Working Papers 2020-78, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    7. Morley, James & Wong, Benjamin, 2018. "Estimating and Accounting for the Output Gap with Large Bayesian Vector Autoregressions," Working Papers 2018-04, University of Sydney, School of Economics, revised Feb 2019.
    8. Buncic, Daniel & Müller, Oliver, 2017. "Measuring the output gap in Switzerland with linear opinion pools," Economic Modelling, Elsevier, vol. 64(C), pages 153-171.
    9. Wolden Bache, Ida & Sofie Jore, Anne & Mitchell, James & Vahey, Shaun P., 2011. "Combining VAR and DSGE forecast densities," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1659-1670, October.
    10. Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas & Irena Pekarskiene, 2024. "Future directions in nowcasting economic activity: A systematic literature review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1199-1233, September.
    11. Marek Jarociński & Michele Lenza, 2018. "An Inflation‐Predicting Measure of the Output Gap in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.
    12. Yury Perevyshin, 2024. "Analysts' Inflation Expectations vs Univariate Models of Inflation Forecasting in the Russian Economy," Russian Journal of Money and Finance, Bank of Russia, vol. 83(2), pages 54-76, June.
    13. Anthony Garratt & Ivan Petrella, 2022. "Commodity prices and inflation risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 392-414, March.
    14. Garratt, Anthony & Henckel, Timo & Vahey, Shaun P., 2023. "Empirically-transformed linear opinion pools," International Journal of Forecasting, Elsevier, vol. 39(2), pages 736-753.
    15. James Morley, 2019. "The business cycle: periodic pandemic or rollercoaster ride?," International Journal of Economic Policy Studies, Springer, vol. 13(2), pages 425-431, August.
    16. Florian Eckert & Nina Mühlebach, 2023. "Global and local components of output gaps," Empirical Economics, Springer, vol. 65(5), pages 2301-2331, November.
    17. de Carvalho, Miguel & Rua, António, 2017. "Real-time nowcasting the US output gap: Singular spectrum analysis at work," International Journal of Forecasting, Elsevier, vol. 33(1), pages 185-198.
    18. Bańbura, Marta & Bobeica, Elena, 2023. "Does the Phillips curve help to forecast euro area inflation?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 364-390.
    19. Chalmovianský, Jakub & Němec, Daniel, 2022. "Assessing uncertainty of output gap estimates: Evidence from Visegrad countries," Economic Modelling, Elsevier, vol. 116(C).

  22. Mitchell, J. & Solomou, S. & Weale, M., 2011. "Monthly GDP Estimates for Inter-War Britain," Cambridge Working Papers in Economics 1155, Faculty of Economics, University of Cambridge.

    Cited by:

    1. James Cloyne & Nicholas Dimsdale & Natacha Postel-Vinay, 2018. "Taxes and Growth: New Narrative Evidence from Interwar Britain," NBER Working Papers 24659, National Bureau of Economic Research, Inc.
    2. David Ronicle, 2022. "Turning in the widening gyre: monetary and fiscal policy in interwar Britain," Bank of England working papers 968, Bank of England.
    3. Bosupeng, Mpho, 2015. "Exports Multiplicity and The Dutch Disease," MPRA Paper 77919, University Library of Munich, Germany, revised 2015.
    4. James Foreman-Peck, 2014. "Great recessions compared," Investigaciones de Historia Económica - Economic History Research (IHE-EHR), Journal of the Spanish Economic History Association, Asociación Española de Historia Económica, vol. 10(02), pages 92-103.
    5. Lennard, Jason & Paker, Meredith, 2023. "Devaluation, Exports, and Recovery from the Great Depression," CEPR Discussion Papers 18702, C.E.P.R. Discussion Papers.
    6. Crafts, Nicholas & Mills, Terence C., 2013. "Rearmament to the Rescue? New Estimates of the Impact of ‘Keynesian’ Policies in 1930s’ Britain," Economic Research Papers 270531, University of Warwick - Department of Economics.
    7. Albers, Thilo & Uebele, Martin, 2015. "The global impact of the great depression," LSE Research Online Documents on Economics 64491, London School of Economics and Political Science, LSE Library.
    8. Ruttachai Seelajaroen & Pornanong Budsaratragoon & Boonlert Jitmaneeroj, 2020. "Do monetary policy transparency and central bank communication reduce interest rate disagreement?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 368-393, April.
    9. Crafts, Nicholas, 2013. "What Does the 1930s’ Experience Tell Us about the Future of the Eurozone?," CAGE Online Working Paper Series 142, Competitive Advantage in the Global Economy (CAGE).
    10. Karau, Sören, 2020. "Buried in the vaults of central banks: Monetary gold hoarding and the slide into the Great Depression," Discussion Papers 63/2020, Deutsche Bundesbank.
    11. Crafts, Nicholas & Mills, Terence C, 2012. "Fiscal Policy in a Depressed Economy: Was There a ‘Free Lunch’ in 1930s’ Britain?," CAGE Online Working Paper Series 106, Competitive Advantage in the Global Economy (CAGE).
    12. Albers, Thilo Nils Hendrik, 2018. "The prelude and global impact of the Great Depression: Evidence from a new macroeconomic dataset," Explorations in Economic History, Elsevier, vol. 70(C), pages 150-163.

  23. Ida Wolden Bache & James Mitchell & Francesco Ravazzolo & Shaun P. Vahey, 2009. "Macro modelling with many models," Working Paper 2009/15, Norges Bank.

    Cited by:

    1. Francesco Ravazzolo & Shaun P. Vahey, 2010. "Forecast densities for economic aggregates from disaggregate ensembles," Working Paper 2010/02, Norges Bank.
    2. Anthony Garratt & James Mitchell & Shaun P. Vahey & Elizabeth C. Wakerly, 2010. "Real-time Inflation Forecast Densities from Ensemble Phillips Curves," CAMA Working Papers 2010-34, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Tony Chernis & Taylor Webley, 2022. "Nowcasting Canadian GDP with Density Combinations," Discussion Papers 2022-12, Bank of Canada.
    4. Francesco Ravazzolo & Shaun P Vahey, 2010. "Measuring Core Inflation in Australia with Disaggregate Ensembles," RBA Annual Conference Volume (Discontinued), in: Renée Fry & Callum Jones & Christopher Kent (ed.),Inflation in an Era of Relative Price Shocks, Reserve Bank of Australia.
    5. Chernis Tony, 2024. "Combining Large Numbers of Density Predictions with Bayesian Predictive Synthesis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 293-317, April.
    6. Wolden Bache, Ida & Sofie Jore, Anne & Mitchell, James & Vahey, Shaun P., 2011. "Combining VAR and DSGE forecast densities," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1659-1670, October.
    7. Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
    8. Chris McDonald & Leif Anders Thorsrud, 2011. "Evaluating density forecasts: model combination strategies versus the RBNZ," Reserve Bank of New Zealand Discussion Paper Series DP2011/03, Reserve Bank of New Zealand.
    9. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Measuring output gap nowcast uncertainty," International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.
    10. Cobb, Marcus P A, 2017. "Aggregate Density Forecasting from Disaggregate Components Using Large VARs," MPRA Paper 76849, University Library of Munich, Germany.

  24. Mitchell, J. & Solomou, S. & Weale, M., 2009. "Monthly and Quarterly GDP Estimates for Interwar Britain," Cambridge Working Papers in Economics 0949, Faculty of Economics, University of Cambridge.

    Cited by:

    1. Ryland Thomas & Sally Hills & Nicholas Dimsdale, 2010. "The UK recession in context — what do three centuries of data tell us?," Bank of England Quarterly Bulletin, Bank of England, vol. 50(4), pages 277-291.

  25. Dr Silvia Lui & Dr Martin Weale & Dr. James Mitchell, 2009. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," National Institute of Economic and Social Research (NIESR) Discussion Papers 343, National Institute of Economic and Social Research.

    Cited by:

    1. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    2. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming”," AQR Working Papers 201706, University of Barcelona, Regional Quantitative Analysis Group, revised May 2017.
    3. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents' expectations. Different patterns of anticipation of the 2008 financial crisis”," IREA Working Papers 201511, University of Barcelona, Research Institute of Applied Economics, revised Mar 2015.
    4. Kjetil Martinsen & Francesco Ravazzolo & Fredrik Wulfsberg, 2011. "Forecasting macroeconomic variables using disaggregate survey data," Working Paper 2011/04, Norges Bank.
    5. Lena Boneva & James Cloyne & Martin Weale & Tomasz Wieladek, 2019. "Firms' Price, Cost and Activity Expectations: Evidence from Micro Data," Discussion Papers 1905, Centre for Macroeconomics (CFM).
    6. Kajal Lahiri & Yongchen Zhao, 2013. "Quantifying Heterogeneous Survey Expectations: The Carlson-Parkin Method Revisited," Discussion Papers 13-08, University at Albany, SUNY, Department of Economics.
    7. Boneva, Lena & Cloyne, James & Weale, Martin & Wieladek, Tomasz, 2018. "Firms' Expectations of New Orders, Employment, Costs and Prices: Evidence from Micro Data," CEPR Discussion Papers 12722, C.E.P.R. Discussion Papers.
    8. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    9. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    10. Antonecchia, Gianluca, 2023. "Heterogeneous expectations, forecast accuracy and firms’ credit demand," European Economic Review, Elsevier, vol. 154(C).
    11. Breitung, Jörg & Schmeling, Maik, 2011. "Quantifying survey expectations: What's wrong with the probability approach?," Hannover Economic Papers (HEP) dp-485, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    12. Pignataro, Giuseppe & Raggi, Davide & Pancotto, Francesca, 2024. "On the role of fundamentals, private signals, and beauty contests to predict exchange rates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 687-705.
    13. Alex Botsis & Kevin Lee, 2022. "Nowcasting Using Firm-Level Survey Data; Tracking UK Output Fluctuations and Recessionary Events," Economic Statistics Centre of Excellence (ESCoE) Technical Reports ESCOE-TR-20, Economic Statistics Centre of Excellence (ESCoE).
    14. Lahiri, Kajal & Zhao, Yongchen, 2015. "Quantifying survey expectations: A critical review and generalization of the Carlson–Parkin method," International Journal of Forecasting, Elsevier, vol. 31(1), pages 51-62.
    15. Kevin Lee & Michael Mahony & Paul Mizen, 2020. "The CBI Suite of Business Surveys," Economic Statistics Centre of Excellence (ESCoE) Technical Reports ESCOE-TR-08, Economic Statistics Centre of Excellence (ESCoE).
    16. Puah, Chin-Hong & Wong, Shirly Siew-Ling & Habibullah, Muzafar Shah, 2012. "Rationality of business operational forecasts: evidence from Malaysian distributive trade sector," MPRA Paper 37599, University Library of Munich, Germany.
    17. Lucia Modugno, 2024. "Evaluating Qualitative Expectational Data on Investments from Business Surveys," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 20(1), pages 59-88, August.
    18. Abhiman Das & Kajal Lahiri & Yongchen Zhao, 2018. "Inflation Expectations in India: Learning from Household Tendency Surveys," Working Papers 2018-03, Towson University, Department of Economics, revised Aug 2018.
    19. Maria Rita Ippoliti & Luigi Martone & Fabiana Sartor, 2024. "Building an integrated database for the trade sector for the period 2010- 2022," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 78(1), pages 75-84, January-M.
    20. Ferrando, Annalisa & Ganoulis, Ioannis & Preuss, Carsten, 2019. "Firms’ expectations on the availability of credit since the financial crisis," Working Paper Series 2341, European Central Bank.
    21. Guizzardi, Andrea & Stacchini, Annalisa, 2015. "Real-time forecasting regional tourism with business sentiment surveys," Tourism Management, Elsevier, vol. 47(C), pages 213-223.

  26. Ida Wolden Bache & Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2009. "Combining VAR and DSGE forecast densities," Working Paper 2009/23, Norges Bank.

    Cited by:

    1. Wolters, Maik H., 2013. "Evaluating point and density forecasts of DSGE models," Economics Working Papers 2013-03, Christian-Albrechts-University of Kiel, Department of Economics.
    2. Nalban, Valeriu, 2018. "Forecasting with DSGE models: What frictions are important?," Economic Modelling, Elsevier, vol. 68(C), pages 190-204.
    3. Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2015. "EuroMInd-D: A Density Estimate of Monthly Gross Domestic Product for the Euro Area," CREATES Research Papers 2015-12, Department of Economics and Business Economics, Aarhus University.
    4. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in Real-Time: A Density Combination Approach," Working Papers No 1/2011, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    5. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    6. Diebold, Francis X. & Schorfheide, Frank & Shin, Minchul, 2017. "Real-time forecast evaluation of DSGE models with stochastic volatility," CFS Working Paper Series 577, Center for Financial Studies (CFS).
    7. Knüppel, Malte, 2011. "Evaluating the calibration of multi-step-ahead density forecasts using raw moments," Discussion Paper Series 1: Economic Studies 2011,32, Deutsche Bundesbank.
    8. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    9. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
    10. Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
    11. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
    12. Ida Wolden Bache & James Mitchell & Francesco Ravazzolo & Shaun P. Vahey, 2009. "Macro modelling with many models," Working Paper 2009/15, Norges Bank.
    13. Rossi, Barbara & Gürkaynak, Refet & Kısacıkoğlu, Burçin, 2013. "Do DSGE Models Forecast More Accurately Out-of-Sample than VAR Models?," CEPR Discussion Papers 9576, C.E.P.R. Discussion Papers.
    14. Periklis Gogas & Theophilos Papadimitriou & Elvira Takli, 2013. "Comparison of Simple Sum and Divisia Monetary Aggregates in GDP Forecasting: A Support Vector Machines Approach," Working Paper series 04_13, Rimini Centre for Economic Analysis.
    15. Gian Luigi Mazzi & James Mitchell & Gaetana Montana, 2014. "Density Nowcasts and Model Combination: Nowcasting Euro-Area GDP Growth over the 2008–09 Recession," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 233-256, April.
    16. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    17. Barbara Rossi & Tatevik Sekhposyan, 2014. "Alternative tests for correct specification of conditional predictive densities," Economics Working Papers 1416, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2017.
    18. Valeriu Nalban, 2015. "Do Bayesian Vector Autoregressive models improve density forecasting accuracy? The case of the Czech Republic and Romania," International Journal of Economic Sciences, International Institute of Social and Economic Sciences, vol. 4(1), pages 60-74, March.
    19. Jakub Ryšánek, 2010. "Combining VAR Forecast Densities Using Fast Fourier Transform," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2010(5), pages 72-88.
    20. Pauwels, Laurent L. & Vasnev, Andrey L., 2016. "A note on the estimation of optimal weights for density forecast combinations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 391-397.
    21. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    22. Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
    23. Sebastiano Manzan, 2015. "Forecasting the Distribution of Economic Variables in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 144-164, January.
    24. Hoornweg, V., 2013. "Some Tools for Robustifying Econometric Analyses," Econometric Institute Research Papers 50163, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

  27. Anthony Garratt & James Mitchell & Shaun P. Vahey & Elizabeth C. Wakerly, 2009. "Real-time Inflation Forecast Densities from Ensemble Phillips Curves," Birkbeck Working Papers in Economics and Finance 0910, Birkbeck, Department of Economics, Mathematics & Statistics.

    Cited by:

    1. Francesco Ravazzolo & Shaun P. Vahey, 2010. "Forecast densities for economic aggregates from disaggregate ensembles," Working Paper 2010/02, Norges Bank.
    2. Hilde Bjørnland & Karsten Gerdrup & Christie Smith & Anne Sofie Jore & Leif Anders Thorsrud, 2010. "Weights and pools for a Norwegian density combination," Working Paper 2010/06, Norges Bank.
    3. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    4. Bo Zhang, 2019. "Real‐time inflation forecast combination for time‐varying coefficient models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 175-191, April.
    5. Christopher McDonald & Craig Thamotheram & Shaun P. Vahey & Elizabeth C. Wakerly, 2016. "Assessing the economic value of probabilistic forecasts in the presence of an inflation target," CAMA Working Papers 2016-40, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Pauwels, Laurent & Vasnev, Andrey, 2013. "Forecast combination for U.S. recessions with real-time data," Working Papers 02/2013, University of Sydney Business School, Discipline of Business Analytics.
    7. Mohsen Khezri & Seyed Ehsan Hosseinidoust & Mohammad Kazem Naziri, 2019. "Investigating the Temporary and Permanent Influential Variables on Iran Inflation Using TVP-DMA Models," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 23(1), pages 209-234, Winter.
    8. McElroy, Tucker S. & Wildi, Marc, 2020. "The Multivariate Linear Prediction Problem: Model-Based and Direct Filtering Solutions," Econometrics and Statistics, Elsevier, vol. 14(C), pages 112-130.
    9. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    10. Garratt, Anthony & Henckel, Timo & Vahey, Shaun P., 2023. "Empirically-transformed linear opinion pools," International Journal of Forecasting, Elsevier, vol. 39(2), pages 736-753.
    11. Li, Gang & Wu, Doris Chenguang & Zhou, Menglin & Liu, Anyu, 2019. "The combination of interval forecasts in tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 363-378.
    12. Gian Luigi Mazzi & James Mitchell & Gaetana Montana, 2014. "Density Nowcasts and Model Combination: Nowcasting Euro-Area GDP Growth over the 2008–09 Recession," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 233-256, April.
    13. Shaun P Vahey & Elizabeth C Wakerly, 2013. "Moving towards probability forecasting," BIS Papers chapters, in: Bank for International Settlements (ed.), Globalisation and inflation dynamics in Asia and the Pacific, volume 70, pages 3-8, Bank for International Settlements.
    14. Gonçalves, Sílvia & McCracken, Michael W. & Yao, Yongxu, 2025. "Bootstrapping out-of-sample predictability tests with real-time data," Journal of Econometrics, Elsevier, vol. 247(C).
    15. Pauwels, Laurent L. & Vasnev, Andrey L., 2016. "A note on the estimation of optimal weights for density forecast combinations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 391-397.
    16. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    17. Tavakolian , Hossein & Babaee , Majid & Shakeri , Abbas, 2018. "How Fluctuations in Macroeconomic Indicators Affect Inflation in Iran," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 13(3), pages 267-289, July.
    18. Bo Zhang & Jamie Cross & Na Guo, 2020. "Time-Varying Trend Models for Forecasting Inflation in Australia," Working Papers No 09/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    19. Siemsen, Thomas & Vilsmeier, Johannes, 2018. "On a quest for robustness: About model risk, randomness and discretion in credit risk stress tests," Discussion Papers 31/2018, Deutsche Bundesbank.
    20. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Measuring output gap nowcast uncertainty," International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.

  28. Anthony Garratt & James Mitchell & Shaun P. Vahey, 2009. "Measuring Output Gap Uncertainty," Birkbeck Working Papers in Economics and Finance 0909, Birkbeck, Department of Economics, Mathematics & Statistics.

    Cited by:

    1. Francesco Ravazzolo & Shaun P. Vahey, 2010. "Forecast densities for economic aggregates from disaggregate ensembles," Working Paper 2010/02, Norges Bank.
    2. Guérin, Pierre & Maurin, Laurent & Mohr, Matthias, 2015. "Trend-Cycle Decomposition Of Output And Euro Area Inflation Forecasts: A Real-Time Approach Based On Model Combination," Macroeconomic Dynamics, Cambridge University Press, vol. 19(2), pages 363-393, March.
    3. Anthony Garratt & James Mitchell & Shaun P. Vahey & Elizabeth C. Wakerly, 2010. "Real-time Inflation Forecast Densities from Ensemble Phillips Curves," CAMA Working Papers 2010-34, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Xueting Yu & Yuhan Zhu & Guangming Lv, 2020. "Analysis of the Impact of China’s GDP Data Revision on Monetary Policy from the Perspective of Uncertainty," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(6), pages 1251-1274, May.
    5. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in Real-Time: A Density Combination Approach," Working Papers No 1/2011, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    6. Francesco Ravazzolo & Shaun P Vahey, 2010. "Measuring Core Inflation in Australia with Disaggregate Ensembles," RBA Annual Conference Volume (Discontinued), in: Renée Fry & Callum Jones & Christopher Kent (ed.),Inflation in an Era of Relative Price Shocks, Reserve Bank of Australia.
    7. Wolden Bache, Ida & Sofie Jore, Anne & Mitchell, James & Vahey, Shaun P., 2011. "Combining VAR and DSGE forecast densities," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1659-1670, October.
    8. Paulo M. Sánchez & Luis Fernando Melo, 2013. "Combinación de brechas del producto colombiano," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 31(72), pages 74-82.
    9. Juan Manuel Julio, 2011. "Data Revisions and the Output Gap," Borradores de Economia 642, Banco de la Republica de Colombia.
    10. Marcellino, Massimiliano & Musso, Alberto, 2010. "The Forecasting Performance of Real Time Estimates of the Euro Area Output Gap," CEPR Discussion Papers 7763, C.E.P.R. Discussion Papers.
    11. Mamdouh Abdelmoula M. ABDELSALAM, 2017. "Improving Phillips Curve’s Inflation Forecasts under Misspecification," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 54-76, September.
    12. Ida Wolden Bache & James Mitchell & Francesco Ravazzolo & Shaun P. Vahey, 2009. "Macro modelling with many models," Working Paper 2009/15, Norges Bank.
    13. Paulo Mauricio S�nchez Beltr�n & Luis Fernando Melo Velandia, 2013. "Combinaci�n de brechas del producto colombiano," Borradores de Economia 10973, Banco de la Republica.

  29. Dr Silvia Lui & Dr Martin Weale & Dr. James Mitchell, 2008. "Qualitative Business Surveys: Signal or Noise?," National Institute of Economic and Social Research (NIESR) Discussion Papers 323, National Institute of Economic and Social Research.

    Cited by:

    1. Kedai Cheng & Derek S. Young, 2023. "An Approach for Specifying Trimming and Winsorization Cutoffs," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 299-323, June.
    2. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    3. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming”," AQR Working Papers 201706, University of Barcelona, Regional Quantitative Analysis Group, revised May 2017.
    4. Rüdiger Bachmann & Steffen Elstner, 2013. "Firms' Optimism and Pessimism," NBER Working Papers 18989, National Bureau of Economic Research, Inc.
    5. Ciaran Driver, 2019. "Trade liberalization and South African manufacturing: Looking back with data," WIDER Working Paper Series wp-2019-30, World Institute for Development Economic Research (UNU-WIDER).
    6. Raïsa Basselier & David Antonio Liedo & Geert Langenus, 2018. "Nowcasting Real Economic Activity in the Euro Area: Assessing the Impact of Qualitative Surveys," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 1-46, April.
    7. Kjetil Martinsen & Francesco Ravazzolo & Fredrik Wulfsberg, 2011. "Forecasting macroeconomic variables using disaggregate survey data," Working Paper 2011/04, Norges Bank.
    8. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    9. Lena Boneva & James CLoyne & Martin Weale & Tomasz Wieladek, 2016. "Firms’ expectations and price-setting: evidence from micro data," Discussion Papers 48, Monetary Policy Committee Unit, Bank of England.
    10. Kajal Lahiri & Yongchen Zhao, 2013. "Quantifying Heterogeneous Survey Expectations: The Carlson-Parkin Method Revisited," Discussion Papers 13-08, University at Albany, SUNY, Department of Economics.
    11. Alexandros Botsis & Christoph Görtz & Plutarchos Sakellaris, 2020. "Quantifying Qualitative Survey Data: New Insights on the (Ir)Rationality of Firms' Forecasts," CESifo Working Paper Series 8148, CESifo.
    12. Driver, Ciaran & Muñoz-Bugarin, Jair, 2019. "Financial constraints on investment: Effects of firm size and the financial crisis," Research in International Business and Finance, Elsevier, vol. 47(C), pages 441-457.
    13. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    14. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    15. Breitung, Jörg & Schmeling, Maik, 2011. "Quantifying survey expectations: What's wrong with the probability approach?," Hannover Economic Papers (HEP) dp-485, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    16. Matthew Corder & Martin Weale, 2011. "Banking crises and recessions: what can leading indicators tell us?," Discussion Papers 33, Monetary Policy Committee Unit, Bank of England.
    17. Mazzi Gian Luigi & Mitchell James & Carausu Florabela, 2021. "Measuring and Communicating the Uncertainty in Official Economic Statistics," Journal of Official Statistics, Sciendo, vol. 37(2), pages 289-316, June.
    18. Alex Botsis & Kevin Lee, 2022. "Nowcasting Using Firm-Level Survey Data; Tracking UK Output Fluctuations and Recessionary Events," Economic Statistics Centre of Excellence (ESCoE) Technical Reports ESCOE-TR-20, Economic Statistics Centre of Excellence (ESCoE).
    19. Luboš Marek & Stanislava Hronová & Richard Hindls, 2019. "Možnosti odhadů krátkodobých makroekonomických agregátů na základě výsledků konjunkturních průzkumů [Possibilities of Estimations of Short-term Macroeconomic Aggregates Based on Business Survey Res," Politická ekonomie, Prague University of Economics and Business, vol. 2019(4), pages 347-370.
    20. Alexandros Botsis & Christoph Gortz & Plutarchos Sakellaris, 2024. "Quantifying Qualitative Survey Data with Panel Data Structure," CAMA Working Papers 2024-21, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    21. Frohm, Erik, 2024. "On the prevalence and intensity of labour shortages," Economics Letters, Elsevier, vol. 244(C).
    22. Lahiri, Kajal & Zhao, Yongchen, 2015. "Quantifying survey expectations: A critical review and generalization of the Carlson–Parkin method," International Journal of Forecasting, Elsevier, vol. 31(1), pages 51-62.
    23. Daniel Kaufmann & Rolf Scheufele, 2015. "Business tendency surveys and macroeconomic fluctuations," KOF Working papers 15-378, KOF Swiss Economic Institute, ETH Zurich.
    24. Lucia Modugno, 2024. "Evaluating Qualitative Expectational Data on Investments from Business Surveys," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 20(1), pages 59-88, August.
    25. Maria Rita Ippoliti & Luigi Martone & Fabiana Sartor, 2024. "Building an integrated database for the trade sector for the period 2010- 2022," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 78(1), pages 75-84, January-M.
    26. Frohm, Erik, 2020. "Price-setting and economic slack: Evidence from firm-level survey data," Journal of Macroeconomics, Elsevier, vol. 65(C).
    27. Guizzardi, Andrea & Stacchini, Annalisa, 2015. "Real-time forecasting regional tourism with business sentiment surveys," Tourism Management, Elsevier, vol. 47(C), pages 213-223.

  30. Anne-Sofie Jore & James Mitchell & Shaun P. Vahey, 2008. "Combining forecast densities from VARs with uncertain instabilities," Working Paper 2008/01, Norges Bank.

    Cited by:

    1. Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
    2. Francesco Ravazzolo & Shaun P. Vahey, 2010. "Forecast densities for economic aggregates from disaggregate ensembles," Working Paper 2010/02, Norges Bank.
    3. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2015. "Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i03).
    4. Allayioti, Anastasia & Venditti, Fabrizio, 2024. "The role of comovement and time-varying dynamics in forecasting commodity prices," Working Paper Series 2901, European Central Bank.
    5. Michael S. Smith & Shaun P. Vahey, 2016. "Asymmetric Forecast Densities for U.S. Macroeconomic Variables from a Gaussian Copula Model of Cross-Sectional and Serial Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 416-434, July.
    6. Tomáš Jeřábek & Jakub Trojan & Radka Šperková, 2013. "Predictive performance of DSGE model for small open economy - the case study of Czech Republic," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 61(7), pages 2229-2238.
    7. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Bayesian Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-003/4, Tinbergen Institute.
    8. Götz, T.B. & Hecq, A.W. & Urbain, J.R.Y.J., 2014. "Combining distributions of real-time forecasts: An application to U.S. growth," Research Memorandum 027, Maastricht University, Graduate School of Business and Economics (GSBE).
    9. Jonathan Berrisch & Florian Ziel, 2023. "Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices," Papers 2303.10019, arXiv.org, revised Feb 2024.
    10. Paponpat Taveeapiradeecharoen & Popkarn Arwatchanakarn, 2025. "Forecasting Thai inflation from univariate Bayesian regression perspective," Papers 2505.05334, arXiv.org, revised May 2025.
    11. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    12. Anne Sofie Jore & James Mitchell & Shaun Vahey, 2008. "Combining Forecast Densities from VARs with Uncertain Instabilities," Reserve Bank of New Zealand Discussion Paper Series DP2008/18, Reserve Bank of New Zealand.
    13. Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2015. "EuroMInd-D: A Density Estimate of Monthly Gross Domestic Product for the Euro Area," CREATES Research Papers 2015-12, Department of Economics and Business Economics, Aarhus University.
    14. Hilde Bjørnland & Karsten Gerdrup & Christie Smith & Anne Sofie Jore & Leif Anders Thorsrud, 2010. "Weights and pools for a Norwegian density combination," Working Paper 2010/06, Norges Bank.
    15. Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2020. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Papers 2012.11649, arXiv.org, revised Jun 2022.
    16. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    17. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    18. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, April.
    19. Nicholas Fawcett & George Kapetanios & James Mitchell & Simon Price, 2014. "Generalised density forecast combinations," Bank of England working papers 492, Bank of England.
    20. Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
    21. Anthony Garratt & James Mitchell & Shaun P. Vahey & Elizabeth C. Wakerly, 2010. "Real-time Inflation Forecast Densities from Ensemble Phillips Curves," CAMA Working Papers 2010-34, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    22. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in Real-Time: A Density Combination Approach," Working Papers No 1/2011, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    23. Kenneth Sæterhagen Paulsen & Tuva Marie Fastbø & Tobias Ingebrigtsen, 2022. "Aggregate density forecast of models using disaggregate data - A copula approach," Working Paper 2022/5, Norges Bank.
    24. Andrea Monticini & Francesco Ravazzolo, 2014. "Forecasting the intraday market price of money," DISCE - Working Papers del Dipartimento di Economia e Finanza def010, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    25. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    26. Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2016. "Short-Term GDP Forecasting With a Mixed-Frequency Dynamic Factor Model With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 118-127, January.
    27. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    28. Tony Chernis & Taylor Webley, 2022. "Nowcasting Canadian GDP with Density Combinations," Discussion Papers 2022-12, Bank of Canada.
    29. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an uncertain economic environment," Working Paper 2014/17, Norges Bank.
    30. Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial Conditions and Density Forecasts for US Output and Inflation," Working Papers 715, Queen Mary University of London, School of Economics and Finance.
    31. Garratt, Anthony & Mise, Emi, 2014. "Forecasting exchange rates using panel model and model averaging," Economic Modelling, Elsevier, vol. 37(C), pages 32-40.
    32. Knüppel, Malte, 2011. "Evaluating the calibration of multi-step-ahead density forecasts using raw moments," Discussion Paper Series 1: Economic Studies 2011,32, Deutsche Bundesbank.
    33. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    34. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
    35. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
    36. Karapanagiotidis, Paul, 2012. "Improving Bayesian VAR density forecasts through autoregressive Wishart Stochastic Volatility," MPRA Paper 38885, University Library of Munich, Germany.
    37. Anthony Garratt & James Mitchell & Shaun P. Vahey, 2009. "Measuring Output Gap Uncertainty," Birkbeck Working Papers in Economics and Finance 0909, Birkbeck, Department of Economics, Mathematics & Statistics.
    38. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.
    39. Francesco Ravazzolo & Shaun P Vahey, 2010. "Measuring Core Inflation in Australia with Disaggregate Ensembles," RBA Annual Conference Volume (Discontinued), in: Renée Fry & Callum Jones & Christopher Kent (ed.),Inflation in an Era of Relative Price Shocks, Reserve Bank of Australia.
    40. Barbara Rossi, 2019. "Identifying and Estimating the Effects of Unconventional Monetary Policy in the Data: How to Do It and What Have We Learned?," Working Papers 1081, Barcelona School of Economics.
    41. Knut Are Aastveit & Jamie Cross & Herman K. Djik, 2021. "Quantifying time-varying forecast uncertainty and risk for the real price of oil," Working Papers No 03/2021, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    42. Bo Zhang, 2019. "Real‐time inflation forecast combination for time‐varying coefficient models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 175-191, April.
    43. Reif Magnus, 2021. "Macroeconomic uncertainty and forecasting macroeconomic aggregates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
    44. Smith, Michael Stanley & Shively, Thomas S., 2018. "Econometric modeling of regional electricity spot prices in the Australian market," Energy Economics, Elsevier, vol. 74(C), pages 886-903.
    45. Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
    46. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    47. Barbara Rossi & Tatevik Sekhposyan, 2013. "Evaluating predictive densities of U.S. output growth and inflation in a large macroeconomic data set," Economics Working Papers 1370, Department of Economics and Business, Universitat Pompeu Fabra.
    48. Hugo Gerard & Kristoffer Nimark, 2008. "Combining Multivariate Density Forecasts Using Predictive Criteria," RBA Research Discussion Papers rdp2008-02, Reserve Bank of Australia.
    49. Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2019. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Working Paper 2019/2, Norges Bank.
    50. Cristina Conflitti & Christine De Mol & Domenico Giannone, 2012. "Optimal Combination of Survey Forecasts," Working Papers ECARES ECARES 2012-023, ULB -- Universite Libre de Bruxelles.
    51. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    52. Wolden Bache, Ida & Sofie Jore, Anne & Mitchell, James & Vahey, Shaun P., 2011. "Combining VAR and DSGE forecast densities," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1659-1670, October.
    53. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    54. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
    55. Pauwels, Laurent & Radchenko, Peter & Vasnev, Andrey, 2020. "Higher Moment Constraints for Predictive Density Combinations," Working Papers BAWP-2020-01, University of Sydney Business School, Discipline of Business Analytics.
    56. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2015. "Bayesian nonparametric calibration and combination of predictive distributions," Working Paper 2015/03, Norges Bank.
    57. Wagner Piazza Gaglianone & Jaqueline Terra Moura Marins, 2014. "Risk Assessment of the Brazilian FX Rate," Working Papers Series 344, Central Bank of Brazil, Research Department.
    58. Paulo M. Sánchez & Luis Fernando Melo, 2013. "Combinación de brechas del producto colombiano," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 31(72), pages 74-82.
    59. Todd E. Clark & Taeyoung Doh, 2011. "A Bayesian evaluation of alternative models of trend inflation," Research Working Paper RWP 11-16, Federal Reserve Bank of Kansas City.
    60. Filippo di Mauro & Filippo di Mauro, Fabio Fornari, 2014. "Going granular: The importance of firm-level equity information in anticipating economic activity," EcoMod2014 6809, EcoMod.
    61. Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
    62. di Mauro, Filippo & Fornari, Fabio & Mannucci, Dario, 2011. "Stock market firm-level information and real economic activity," Working Paper Series 1366, European Central Bank.
    63. Manzan, Sebastiano & Zerom, Dawit, 2009. "Are Macroeconomic Variables Useful for Forecasting the Distribution of U.S. Inflation?," MPRA Paper 14387, University Library of Munich, Germany.
    64. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
    65. Christian Kascha & Francesco Ravazzolo, 2008. "Combining inflation density forecasts," Working Paper 2008/22, Norges Bank.
    66. Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
    67. Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
    68. Anthony Garratt & Ivan Petrella, 2022. "Commodity prices and inflation risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 392-414, March.
    69. Hilde C. Bjørnland & Karsten Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Does forecast combination improve Norges Bank inflation forecasts?," Working Paper 2009/01, Norges Bank.
    70. Garratt, Anthony & Henckel, Timo & Vahey, Shaun P., 2023. "Empirically-transformed linear opinion pools," International Journal of Forecasting, Elsevier, vol. 39(2), pages 736-753.
    71. Timo Henckel & Shaun Vahey & Liz Wakerly, 2011. "Probabilistic interest rate setting with a shadow board: A description of the pilot project," CAMA Working Papers 2011-27, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    72. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
    73. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
    74. Ida Wolden Bache & James Mitchell & Francesco Ravazzolo & Shaun P. Vahey, 2009. "Macro modelling with many models," Working Paper 2009/15, Norges Bank.
    75. K=osaku Takanashi & Kenichiro McAlinn, 2019. "Equivariant online predictions of non-stationary time series," Papers 1911.08662, arXiv.org, revised Jun 2023.
    76. McAdam, Peter & Warne, Anders, 2020. "Density forecast combinations: the real-time dimension," Working Paper Series 2378, European Central Bank.
    77. Panopoulou, Ekaterini & Vrontos, Spyridon, 2015. "Hedge fund return predictability; To combine forecasts or combine information?," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 103-122.
    78. Gian Luigi Mazzi & James Mitchell & Gaetana Montana, 2014. "Density Nowcasts and Model Combination: Nowcasting Euro-Area GDP Growth over the 2008–09 Recession," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 233-256, April.
    79. Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    80. Kirdan Lees, 2009. "Overview of a recent Reserve Bank workshop: nowcasting with model combination," Reserve Bank of New Zealand Bulletin, Reserve Bank of New Zealand, vol. 72, pages 31-33, March.
    81. Luiz Renato Regis de Oliveira Lima & Wagner Piazza Gaglianone, 2012. "Constructing Optimal Density Forecasts from Point Forecast Combinations," Série Textos para Discussão (Working Papers) 5, Programa de Pós-Graduação em Economia - PPGE, Universidade Federal da Paraíba.
    82. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    83. Constantin Bürgi & Tara M. Sinclair, 2015. "A Nonparametric Approach to Identifying a Subset of Forecasters that Outperforms the Simple Average," Working Papers 2015-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    84. Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial indicators and density forecasts for US output and inflation," Temi di discussione (Economic working papers) 977, Bank of Italy, Economic Research and International Relations Area.
    85. Leopoldo Catania & Alessandra Luati & Pierluigi Vallarino, 2021. "Economic vulnerability is state dependent," CREATES Research Papers 2021-09, Department of Economics and Business Economics, Aarhus University.
    86. Tomáš Jeřábek & Radka Šperková, 2015. "A Predictive Likelihood Approach to Bayesian Averaging," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 63(4), pages 1269-1276.
    87. Shaun P Vahey & Elizabeth C Wakerly, 2013. "Moving towards probability forecasting," BIS Papers chapters, in: Bank for International Settlements (ed.), Globalisation and inflation dynamics in Asia and the Pacific, volume 70, pages 3-8, Bank for International Settlements.
    88. Niango Ange Joseph Yapi, 2020. "Exchange rate predictive densities and currency risks: A quantile regression approach," EconomiX Working Papers 2020-16, University of Paris Nanterre, EconomiX.
    89. Kenneth Wallis, 2011. "Combining forecasts - forty years later," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 33-41.
    90. Fabian Krüger & Ingmar Nolte, 2011. "Disagreement, Uncertainty and the True Predictive Density," Working Paper Series of the Department of Economics, University of Konstanz 2011-43, Department of Economics, University of Konstanz.
    91. Victor Lopez-Perez, 2016. "Macroeconomic Forecast Uncertainty In The Euro Area," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(1), pages 9-41, March.
    92. Pauwels, Laurent L. & Vasnev, Andrey L., 2016. "A note on the estimation of optimal weights for density forecast combinations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 391-397.
    93. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    94. Ruben Loaiza-Maya & Gael M Martin & David T. Frazier, 2020. "Focused Bayesian Prediction," Monash Econometrics and Business Statistics Working Papers 1/20, Monash University, Department of Econometrics and Business Statistics.
    95. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    96. Sanvi Avouyi-Dovi & Claire Labonne & Rémy Lecat & Simon Ray, 2017. "Insight from a Time-Varying VAR Model with Stochastic Volatility of the French Housing and Credit Markets," Working papers 620, Banque de France.
    97. Paulo Mauricio S�nchez Beltr�n & Luis Fernando Melo Velandia, 2013. "Combinaci�n de brechas del producto colombiano," Borradores de Economia 10973, Banco de la Republica.
    98. Berrisch, Jonathan & Ziel, Florian, 2024. "Multivariate probabilistic CRPS learning with an application to day-ahead electricity prices," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1568-1586.
    99. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Measuring output gap nowcast uncertainty," International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.
    100. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Can Macroeconomists Forecast Risk? Event-Based Evidence from the Euro-Area SPF," International Journal of Central Banking, International Journal of Central Banking, vol. 11(4), pages 1-46, December.
    101. Diego Fresoli, 2022. "Bootstrap VAR forecasts: The effect of model uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 279-293, March.
    102. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Online Appendix to "Financial conditions and density forecasts for US output and inflation"," Online Appendices 14-103, Review of Economic Dynamics.
    103. Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
    104. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
    105. Taylor, James W., 2020. "Forecast combinations for value at risk and expected shortfall," International Journal of Forecasting, Elsevier, vol. 36(2), pages 428-441.
    106. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Nonlinear Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-172/4, Tinbergen Institute.
    107. Berrisch, Jonathan & Ziel, Florian, 2023. "CRPS learning," Journal of Econometrics, Elsevier, vol. 237(2).
    108. Sebastiano Manzan, 2015. "Forecasting the Distribution of Economic Variables in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 144-164, January.
    109. Bańbura, Marta & Brenna, Federica & Paredes, Joan & Ravazzolo, Francesco, 2021. "Combining Bayesian VARs with survey density forecasts: does it pay off?," Working Paper Series 2543, European Central Bank.
    110. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
    111. Clark, Todd E. & Doh, Taeyoung, 2014. "Evaluating alternative models of trend inflation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 426-448.
    112. Ciccarelli, Matteo & Darracq Pariès, Matthieu & Priftis, Romanos & Angelini, Elena & Bańbura, Marta & Bokan, Nikola & Fagan, Gabriel & Gumiel, José Emilio & Kornprobst, Antoine & Lalik, Magdalena & Mo, 2024. "ECB macroeconometric models for forecasting and policy analysis," Occasional Paper Series 344, European Central Bank.
    113. Kocięcki, Andrzej & Kolasa, Marcin & Rubaszek, Michał, 2012. "A Bayesian method of combining judgmental and model-based density forecasts," Economic Modelling, Elsevier, vol. 29(4), pages 1349-1355.

  31. Troy Matheson & James Mitchell & Brian Silverstone, 2007. "Nowcasting and predicting data revisions in real time using qualitative panel survey data," Reserve Bank of New Zealand Discussion Paper Series DP2007/02, Reserve Bank of New Zealand.

    Cited by:

    1. Bhattacharya, Rudrani & Pandey, Radhika & Veronese, Giovanni, 2011. "Tracking India Growth in Real Time," Working Papers 11/90, National Institute of Public Finance and Policy.
    2. Kirdan Lees, 2009. "Overview of a recent Reserve Bank workshop: nowcasting with model combination," Reserve Bank of New Zealand Bulletin, Reserve Bank of New Zealand, vol. 72, pages 31-33, March.

  32. Dr Martin Weale & Dr. James Mitchell, 2007. "The Rationality and Reliability of Expectations Reported by British Households: Micro Evidence from the British Household Panel Survey," National Institute of Economic and Social Research (NIESR) Discussion Papers 287, National Institute of Economic and Social Research.

    Cited by:

    1. Magdalena Szyszko, 2017. "Central Banks Inflation Forecast and Expectations. A Comparative Analysis," Prague Economic Papers, Prague University of Economics and Business, vol. 2017(3), pages 286-299.
    2. David G. Blanchflower & Conall MacCoille, 2009. "The formation of inflation expectations: an empirical analysis for the UK," NBER Working Papers 15388, National Bureau of Economic Research, Inc.
    3. Bovi, Maurizio, 2009. "Economic versus psychological forecasting. Evidence from consumer confidence surveys," Journal of Economic Psychology, Elsevier, vol. 30(4), pages 563-574, August.
    4. Péter Gábriel, 2010. "Household inflation expectations and inflation dynamics," MNB Working Papers 2010/12, Magyar Nemzeti Bank (Central Bank of Hungary).
    5. Brown, Sarah & Harris, Mark N. & Spencer, Christopher & Taylor, Karl, 2020. "Financial Expectations and Household Consumption: Does Middle Inflation Matter?," IZA Discussion Papers 13023, Institute of Labor Economics (IZA).
    6. Magdalena Szyszko & Aleksandra Rutkowska, 2019. "Forward-looking component in consumers’ expectations and inflation forecast targeting: the case of six European economies," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(1), pages 77-112.
    7. Maurizio Bovi, 2008. "The “Psycho-analysis” of Common People’s Forecast Errors. Evidence from European Consumer Surveys," ISAE Working Papers 95 Classification-JEL C42, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    8. Piotr Białowolski, 2016. "The influence of negative response style on survey-based household inflation expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(2), pages 509-528, March.
    9. Abubakar Mammadi & Habu Mallam Baba & Sadiq Tukur & Abdul Azeez Adam Muhammad & Umar Abdullahi, 2020. "Measuring Residents Satisfaction Levels of Public Housing in Maiduguri Metropolis of Borno State, Nigeria," Traektoriâ Nauki = Path of Science, Altezoro, s.r.o. & Dialog, vol. 6(3), pages 3001-3020, Macrh.
    10. Sarah Brown & Karl Taylor, 2008. "Expectations, Reservation Wages And Employment: Evidence From British Panel Data," Working Papers 2008007, The University of Sheffield, Department of Economics, revised May 2008.

  33. Dr Martin Weale & Dr. James Mitchell, 2005. "Uncertainty in UK manufacturing: evidence from qualitative survey data," National Institute of Economic and Social Research (NIESR) Discussion Papers 266, National Institute of Economic and Social Research.

    Cited by:

    1. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“A geometric approach to proxy economic uncertainty by a metric of disagreement among qualitative expectations”," AQR Working Papers 201803, University of Barcelona, Regional Quantitative Analysis Group, revised Jun 2018.
    2. Joseph P. Byrne & Marina-Eliza Spaliara & Serafeim Tsoukas, 2016. "Firm Survival, Uncertainty, And Financial Frictions: Is There A Financial Uncertainty Accelerator?," Economic Inquiry, Western Economic Association International, vol. 54(1), pages 375-390, January.
    3. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.
    4. Oscar Claveria, 2020. "“Measuring and assessing economic uncertainty”," AQR Working Papers 2012003, University of Barcelona, Regional Quantitative Analysis Group, revised Jul 2020.
    5. Breitung, Jörg & Schmeling, Maik, 2011. "Quantifying survey expectations: What's wrong with the probability approach?," Hannover Economic Papers (HEP) dp-485, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    6. Oscar Claveria, 2021. "Forecasting with Business and Consumer Survey Data," Forecasting, MDPI, vol. 3(1), pages 1-22, February.
    7. Oscar Claveria, 2021. "Disagreement on expectations: firms versus consumers," SN Business & Economics, Springer, vol. 1(12), pages 1-23, December.
    8. Kevin Lee & Michael Mahony & Paul Mizen, 2020. "The CBI Suite of Business Surveys," Economic Statistics Centre of Excellence (ESCoE) Technical Reports ESCOE-TR-08, Economic Statistics Centre of Excellence (ESCoE).
    9. Oscar Claveria, 2021. "Uncertainty indicators based on expectations of business and consumer surveys," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 48(2), pages 483-505, May.
    10. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Economic Uncertainty: A Geometric Indicator of Discrepancy Among Experts’ Expectations," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 143(1), pages 95-114, May.

  34. Dr Martin Weale & Dr. James Mitchell, 2005. "Poverty and Debt," National Institute of Economic and Social Research (NIESR) Discussion Papers 263, National Institute of Economic and Social Research.

    Cited by:

    1. Servaas Deroose (Editor), 2006. "Assessing the factors of resilience of private consumption in the euro area," European Economy - Economic Papers 2008 - 2015 252, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.

  35. James Mitchell, 2005. "Should we be surprised by the unreliability of real-time output gap estimates? Density estimates for the Euro area," Computing in Economics and Finance 2005 52, Society for Computational Economics.

    Cited by:

    1. Cayen, Jean-Philippe & van Norden, Simon, 2004. "The reliability of Canadian output gap estimates," Discussion Paper Series 1: Economic Studies 2004,29, Deutsche Bundesbank.

  36. James Mitchell & Michael Massmann, 2004. "Reconsidering the evidence: are Eurozone business cycles converging?," Money Macro and Finance (MMF) Research Group Conference 2003 67, Money Macro and Finance Research Group.

    Cited by:

    1. Michaelides, Panayotis G. & Papageorgiou, Theofanis & Vouldis, Angelos T., 2013. "Business cycles and economic crisis in Greece (1960–2011): A long run equilibrium analysis in the Eurozone," Economic Modelling, Elsevier, vol. 31(C), pages 804-816.
    2. Juliana Ávila Vélez & Álvaro José Pinzón Giraldo, 2015. "¿Están sincronizados los ciclos económicos en Latinoamérica?," Borradores de Economia 864, Banco de la Republica de Colombia.
    3. Martin Gächter & Aleksandra Riedl & Doris Ritzberger-Grünwald, 2012. "Business Cycle Synchronization in the Euro Area and the Impact of the Financial Crisis," Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank), issue 2, pages 33-60.
    4. Balli, Faruk & Rana, Faisal, 2015. "Determinants of risk sharing through remittances," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 107-116.
    5. Inklaar, Robert & Jong-A-Pin, Richard & de Haan, Jakob, 2008. "Trade and business cycle synchronization in OECD countries--A re-examination," European Economic Review, Elsevier, vol. 52(4), pages 646-666, May.
    6. Ludmila Fadejeva & Aleksejs Melihovs, 2008. "The Baltic states and Europe: common factors of economic activity," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 8(1), pages 75-96, October.
    7. Angelos VOULDIS & Panayotis MICHAELIDES & John MILIOS, 2008. "Do Technology Shocks affect Output and Profitability over the Business Cycle in Greece (1960-2008)?," EcoMod2008 23800152, EcoMod.
    8. Ageliki Anagnostou & Ioannis Panteladis & Maria Tsiapa, 2015. "Disentangling different patterns of business cycle synchronicity in the EU regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(3), pages 615-641, August.
    9. Michaelides, Panayotis G. & Tsionas, Efthymios G. & Konstantakis, Konstantinos N., 2018. "Debt Crisis in Europe (2001-2015): A Network General Equilibrium GVAR approach," MPRA Paper 89998, University Library of Munich, Germany.
    10. Hideaki HIRATA & Ayhan KOSE & Christopher OTROK, 2013. "Regionalization vs. Globalization," Discussion papers 13004, Research Institute of Economy, Trade and Industry (RIETI).
    11. Ionut Jianu, 2020. "Examining the drivers of business cycle divergence between Euro Area and Romania," Papers 2007.11407, arXiv.org.
    12. Viviana Fernandez & Ali M. Kutan, 2005. "Do Regional Integration Agreements Increase Business-Cycle Convergence? Evidence From APEC and NAFTA," William Davidson Institute Working Papers Series wp765, William Davidson Institute at the University of Michigan.
    13. Bengoechea, Pilar & Camacho, Maximo & Perez-Quiros, Gabriel, 2006. "A useful tool for forecasting the Euro-area business cycle phases," International Journal of Forecasting, Elsevier, vol. 22(4), pages 735-749.
    14. Konstantakis, Konstantinos N. & Michaelides, Panayotis G. & Vouldis, Angelos T., 2016. "Non-Performing Loans (ΝPLs) in a Crisis Economy: Long-Run Equilibrium Analysis with a Real-Time VEC Model for Greece (2001-2015)," MPRA Paper 90000, University Library of Munich, Germany.
    15. Chen, Xiaoshan & Mills, Terence C., 2009. "Evaluating growth cycle synchronisation in the EU," Economic Modelling, Elsevier, vol. 26(2), pages 342-351, March.
    16. Marco Percoco, 2016. "Labour Market Institutions: Sensitivity to the Cycle and Impact of the Crisis in European Regions," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 107(3), pages 375-385, July.
    17. Jakob De Haan & Robert Inklaar & Richard Jong‐A‐Pin, 2008. "Will Business Cycles In The Euro Area Converge? A Critical Survey Of Empirical Research," Journal of Economic Surveys, Wiley Blackwell, vol. 22(2), pages 234-273, April.
    18. Ifrim Mihaela & Ignat Ion, 2009. "The European Business Cycle," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 332-336, May.
    19. Konstantinos Konstantakis & Theofanis Papageorgiou & Panayotis Michaelides & Efthymios Tsionas, 2015. "Economic Fluctuations and Fiscal Policy in Europe: A Political Business Cycles Approach Using Panel Data and Clustering (1996–2013)," Open Economies Review, Springer, vol. 26(5), pages 971-998, November.
    20. Gabriel Moser & Wolfgang Pointner & Gerhard Reitschuler, 2004. "Economic Growth in Denmark, Sweden and the United Kingdom since the Start of Monetary Union," Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 53-66.
    21. Antje Hildebrandt & Isabella Moder, 2015. "Business cycle synchronization between the Western Balkans and the European Union," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 3, pages 8-25.
    22. Sybille Lehwald, 2013. "Has the Euro changed business cycle synchronization? Evidence from the core and the periphery," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 40(4), pages 655-684, November.
    23. Calcagnini, Giorgio & Travaglini, Giuseppe, 2014. "A time series analysis of labor productivity. Italy versus the European countries and the U.S," Economic Modelling, Elsevier, vol. 36(C), pages 622-628.
    24. Theophilos Papadimitriou & Periklis Gogas & Georgios Sarantitis, 2016. "Convergence of European Business Cycles: A Complex Networks Approach," Computational Economics, Springer;Society for Computational Economics, vol. 47(2), pages 97-119, February.
    25. Papageorgiou, Theofanis & Michaelides, Panayotis G. & Tsionas, Efthymios G., 2016. "Business cycle determinants and fiscal policy: A Panel ARDL approach for EMU," The Journal of Economic Asymmetries, Elsevier, vol. 13(C), pages 57-68.
    26. Jianu, Ionut, 2020. "Examining the drivers of business cycle divergence between Euro Area and Romania," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 27(2), pages 19-32.
    27. Crespo-Cuaresma, Jesús & Fernández-Amador, Octavio, 2013. "Business cycle convergence in EMU: A second look at the second moment," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 239-259.
    28. Makoto Muto & Tamotsu Onozaki & Yoshitaka Saiki, 2023. "Regional Synchronization during Economic Contraction: The Case of the U.S. and Japan," Applied Economics, Taylor & Francis Journals, vol. 55(30), pages 3472-3486, June.
    29. Máximo Camacho & Gabriel Pérez-Quirós & Lorena Saiz, 2004. "Are european business cycles close enough to be just one?," Working Papers 0408, Banco de España.
    30. Konstantakis, Konstantinos N. & Michaelides, Panayotis G., 2017. "Technology and Business Cycles: A Schumpeterian Investigation for the USA," MPRA Paper 80636, University Library of Munich, Germany.
    31. Michaelides, Panayotis G. & Tsionas, Efthymios G. & Konstantakis, Konstantinos N., 2018. "Debt dynamics in Europe: A Network General Equilibrium GVAR approach," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 175-202.
    32. Beate Schirwitz & Christian Seiler & Klaus Wohlrabe, 2009. "Regionale Konjunkturzyklen in Deutschland – Teil III: Konvergenz," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(15), pages 23-32, August.
    33. Bergman, Michael, 2004. "How Similar Are European Business Cycles?," Working Papers 2004:9, Lund University, Department of Economics.
    34. André, NYEMBWE & Konstantin, KHOLODILIN, 2005. "North-South Asymmetric Relationships : Does the EMU Business Affect Small African Economies ?," Discussion Papers (ECON - Département des Sciences Economiques) 2005032, Université catholique de Louvain, Département des Sciences Economiques.
    35. Susanne Bärenthaler-Sieber & Sandra Bilek-Steindl & Christian Glocker, 2013. "Trade Synchronisation During Major Economic Crises," WIFO Working Papers 449, WIFO.
    36. Sergiy Rakhmayil, 2010. "Did Financial Performance Of European Firms Improve And Converge After Introduction Of The Euro?," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 4(2), pages 27-41.
    37. Jesús Crespo-Cuaresma & Octavio Fernández-Amador, 2010. "Business cycle convergence in EMU: A first look at the second moment," FIW Working Paper series 054, FIW.
    38. Kappler Marcus, 2011. "Business Cycle Co-movement and Trade Intensity in the Euro Area: is there a Dynamic Link?," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(2), pages 247-265, April.
    39. Michaelides, Panayotis G. & Papageorgiou, Theofanis, 2012. "On the transmission of economic fluctuations from the USA to EU-15 (1960–2011)," Journal of Economics and Business, Elsevier, vol. 64(6), pages 427-438.
    40. Afflatet, Nicolas, 2014. "European Monetary Policy in the Heterogeneous Currency Area and the Open Question of Convergence," EconStor Preprints 93382, ZBW - Leibniz Information Centre for Economics.
    41. Dionysios K. Solomos & Dimitrios N. Koumparoulis, 2013. "Financial Sector and Business Cycles Determinants in the EMU: An Empirical Approach (1996-2011)," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 34-58.
    42. Mark Mink & Jan P.A.M. Jacobs & Jakob de Haan, 2007. "Measuring Synchronicity And Co-Movement Of Business Cycles With An Application To The Euro Area," CAMA Working Papers 2007-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    43. Bojeşteanu, Elena & Manu, Ana Simona, 2011. "Analiza empirică a sincronizării ciclului de afaceri şi a similarităţii şocurilor între România şi zona euro [Empirical analysis of business cycle synchronization and shock similarity between Roman," MPRA Paper 31295, University Library of Munich, Germany.
    44. U. Michael Bergman, 2004. "How Similar Are European Business Cycles?," EPRU Working Paper Series 04-13, Economic Policy Research Unit (EPRU), University of Copenhagen. Department of Economics, revised Nov 2004.
    45. Emilia Gyoerk, 2017. "Economic Costs and Benefits of EMU Membership from the Perspective of a Non-member," Open Economies Review, Springer, vol. 28(5), pages 893-921, November.
    46. Sonia de Lucas Santos & M. Jesús Delgado Rodríguez & Inmaculada Álvarez Ayuso & José Luis Cendejas Bueno, 2011. "Los ciclos económicos internacionales: antecedentes y revisión de la literatura," Cuadernos de Economía - Spanish Journal of Economics and Finance, Asociación Cuadernos de Economía, vol. 34(95), pages 73-84, Agosto.
    47. Gyódi Kristóf & Sobolewski Maciej & Ziembiński Michał, 2017. "What Drives Price Dispersion in the European E-commerce Industry?," Central European Economic Journal, Sciendo, vol. 3(50), pages 53-71, December.
    48. Ionuț JIANU, 2020. "Examining the drivers of business cycle divergence between Euro Area and Romania," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(623), S), pages 19-32, Summer.
    49. Theofanis Papageorgiou & Panayotis G. Michaelides & John G. Milios, 2011. "Technology and economic fluctuations in the US food sector (1958‐2006)," International Journal of Social Economics, Emerald Group Publishing Limited, vol. 38(2), pages 140-164, January.
    50. Hasan Engin Duran & Alexandra Ferreira-Lopes, 2017. "Determinants of co-movement and of lead and lag behavior of business cycles in the Eurozone," International Review of Applied Economics, Taylor & Francis Journals, vol. 31(2), pages 255-282, March.
    51. Panayotis G. Michaelides & Konstantinos N. Konstantakis, 2015. "Business Cycles and Economic Crisis: The Case of Car Sales in Athens, Greece (2000-2012)," Bulletin of Political Economy, Bulletin of Political Economy, vol. 9(1), pages 69-83, June.
    52. Panayotis G. Michaelides & Efthymios G. Tsionas & Angelos T. Vouldis & Konstantinos N. Konstantakis & Panagiotis Patrinos, 2018. "A Semi-Parametric Non-linear Neural Network Filter: Theory and Empirical Evidence," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 637-675, March.
    53. Bovi, M., 2005. "Economic Clubs and European Commitment. Evidence from the International Business Cycles," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 2(2), pages 101-122.
    54. Papageorgiou, Theofanis & Michaelides, Panayotis G. & Milios, John G., 2010. "Business cycles synchronization and clustering in Europe (1960-2009)," Journal of Economics and Business, Elsevier, vol. 62(5), pages 419-470, September.
    55. Solomos, Dionysios & Papageorgiou, Theofanis & Koumparoulis, Dimitrios, 2012. "Financial Sector and Business Cycles Determinants in the EMU context: An Empirical Approach (1996-2011)," MPRA Paper 43858, University Library of Munich, Germany.
    56. Hui-Ying Sng & Liyu Dou & Pradumna Bickram Rana, 2017. "Catalyst Of Business Cycle Synchronization In East Asia," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 62(03), pages 703-719, June.
    57. Faruk Balli & Faisal Rana, 2014. "Determinants of risk sharing through remittances: cross-country evidence," CAMA Working Papers 2014-12, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    58. Barbara Berkel, 2006. "The EMU and German Cross-Border Portfolio Flows," MEA discussion paper series 06110, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    59. Kovačić, Zlatko & Vilotić, Miloš, 2017. "Assessing European business cycles synchronization," MPRA Paper 79990, University Library of Munich, Germany.
    60. Martin Gächter & Aleksandra Riedl, 2013. "One Money, One Cycle? The EMU Experience," Working Papers 186, Oesterreichische Nationalbank (Austrian Central Bank).
    61. Konstantakis, Konstantinos & Michaelides, Panayotis G., 2014. "The Political Economy of Car Sales in Athens, Greece," MPRA Paper 74489, University Library of Munich, Germany.
    62. Periklis Gogas, 2013. "Business cycle synchronisation in the European Union: The effect of the common currency," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(1), pages 1-14.
    63. Papageorgiou, Theofanis & Michaelides, Panayotis G. & Milios, John, 2009. "Economic Fluctuations, Cyclical Regularities and Technological Change: The U.S. Food Sector (1958–2006)," MPRA Paper 67115, University Library of Munich, Germany.
    64. Demyanyk, Yuliya & Volosovych, Vadym, 2005. "Macroeconomic Asymmetry in the European Union: The Difference Between New and Old Members," CEPR Discussion Papers 4847, C.E.P.R. Discussion Papers.
    65. Konstantakis, Konstantinos & Michaelides, Panayotis G. & Tsionas, Efthymios, 2015. "The Determinants of Economic Fluctuations in Greece: An Empirical Investigation (1995-2014)," MPRA Paper 74459, University Library of Munich, Germany.
    66. Ioanna Konstantakopoulou & Eftymios Tsionas & Tryphon Kollintzas, 2009. "Stylized Facts of Prices and Interest Rates over the Business Cycle," Economics Bulletin, AccessEcon, vol. 29(4), pages 2613-2627.
    67. Matesanz, David & Ortega, Guillermo J., 2016. "On business cycles synchronization in Europe: A note on network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 287-296.

  37. Dr. James Mitchell, 2004. "Optimal combination of density forecasts," National Institute of Economic and Social Research (NIESR) Discussion Papers 248, National Institute of Economic and Social Research.

    Cited by:

    1. Pär Österholm, 2006. "Incorporating judgement in fan charts," Finance and Economics Discussion Series 2006-39, Board of Governors of the Federal Reserve System (U.S.).
    2. Ohnsorge,Franziska Lieselotte & Stocker,Marc & Some,Modeste Y., 2016. "Quantifying uncertainties in global growth forecasts," Policy Research Working Paper Series 7770, The World Bank.
    3. Benjamin Avanzi & Yanfeng Li & Bernard Wong & Alan Xian, 2022. "Ensemble distributional forecasting for insurance loss reserving," Papers 2206.08541, arXiv.org, revised Jun 2024.
    4. Mouratidis, Kostas, 2008. "Evaluating currency crises: A Bayesian Markov switching approach," Journal of Macroeconomics, Elsevier, vol. 30(4), pages 1688-1711, December.

  38. Dr Martin Weale & Dr. James Mitchell, 2001. "Quantification of qualitative firm-level survey data," National Institute of Economic and Social Research (NIESR) Discussion Papers 181, National Institute of Economic and Social Research.

    Cited by:

    1. Bob McNabb & Karl Taylor, 2002. "Business Cycles and the Role of Confidence: Evidence from Europe," Discussion Papers in Economics 02/3, Division of Economics, School of Business, University of Leicester.
    2. Tatiana Cesaroni, 2007. "Inspecting the cyclical properties of the Italian Manufacturing Business survey data," ISAE Working Papers 83, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    3. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    4. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming”," AQR Working Papers 201706, University of Barcelona, Regional Quantitative Analysis Group, revised May 2017.
    5. Bruno Giancarlo & Lupi Claudio, 2003. "Forecasting Euro-Area Industrial Production Using (Mostly) Business Surveys Data," ISAE Working Papers 33, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    6. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents' expectations. Different patterns of anticipation of the 2008 financial crisis”," IREA Working Papers 201511, University of Barcelona, Research Institute of Applied Economics, revised Mar 2015.
    7. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.
    8. Miguel A. Costa-Gomes & Georg Weizsäcker, 2004. "Stated Beliefs and Play in Normal-Form Games," ISER Discussion Paper 0614, Institute of Social and Economic Research, The University of Osaka.
    9. David Bywaters & Gareth Thomas, 2008. "Output Expectations and Forecasting of UK Manufacturing," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 36(2), pages 125-137, June.
    10. Ulf von Kalckreuth, 2005. "Financial constraints and real activity: a non-structural approach using UK survey data," BIS Papers chapters, in: Bank for International Settlements (ed.), Investigating the relationship between the financial and real economy, volume 22, pages 64-80, Bank for International Settlements.
    11. Kajal Lahiri & Yongchen Zhao, 2013. "Quantifying Heterogeneous Survey Expectations: The Carlson-Parkin Method Revisited," Discussion Papers 13-08, University at Albany, SUNY, Department of Economics.
    12. Ulf von Kalckreuth & Emma Murphy, 2005. "Financial constraints and capacity adjustment in the United Kingdom: evidence from a large panel of survey data," Bank of England working papers 260, Bank of England.
    13. Lanse Minkler, 2002. "Shirking and Motivation in Firms: Survey Evidence on Worker Attitudes," Working papers 2002-37, University of Connecticut, Department of Economics.
    14. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    15. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    16. Breitung, Jörg & Schmeling, Maik, 2011. "Quantifying survey expectations: What's wrong with the probability approach?," Hannover Economic Papers (HEP) dp-485, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    17. Oscar Claveria, 2021. "Forecasting with Business and Consumer Survey Data," Forecasting, MDPI, vol. 3(1), pages 1-22, February.
    18. G. Bruno & L. Crosilla & P. Margani, 2019. "Inspecting the Relationship Between Business Confidence and Industrial Production: Evidence on Italian Survey Data," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 15(1), pages 1-24, April.
    19. Lahiri, Kajal & Zhao, Yongchen, 2015. "Quantifying survey expectations: A critical review and generalization of the Carlson–Parkin method," International Journal of Forecasting, Elsevier, vol. 31(1), pages 51-62.
    20. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Empirical modelling of survey-based expectations for the design of economic indicators in five European regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 205-227, May.
    21. Tommaso Proietti & Cecilia Frale, 2007. "New proposals for the quantification of qualitative survey data," CEIS Research Paper 98, Tor Vergata University, CEIS.
    22. Nolte, Ingmar & Pohlmeier, Winfried, 2007. "Using forecasts of forecasters to forecast," International Journal of Forecasting, Elsevier, vol. 23(1), pages 15-28.
    23. Leandro D�Aurizio & Stefano Iezzi, 2011. "Investment forecasting with business survey data," Temi di discussione (Economic working papers) 832, Bank of Italy, Economic Research and International Relations Area.

Articles

  1. Ilias Filippou & Christian Garciga & James Mitchell & My T. Nguyen, 2024. "Regional Economic Sentiment: Constructing Quantitative Estimates from the Beige Book and Testing Their Ability to Forecast Recessions," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2024(08), pages 1-8, April.

    Cited by:

    1. Joel Elvery, 2024. "Introduction to the Cleveland Fed Survey of Regional Conditions and Expectations (SORCE) Indexes," Cleveland Fed District Data Brief 99167, Federal Reserve Bank of Cleveland.
    2. Charles S. Gascon & Joseph Martorana, 2024. "The Beige Book and the Business Cycle: Using Beige Book Anecdotes to Construct Recession Probabilities," Working Papers 2024-037, Federal Reserve Bank of St. Louis, revised 06 Dec 2024.

  2. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    See citations under working paper version above.
  3. Koop, Gary & McIntyre, Stuart & Mitchell, James & Poon, Aubrey, 2024. "Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 626-640.
    See citations under working paper version above.
  4. Ana Beatriz Galvão & James Mitchell, 2024. "Communicating Data Uncertainty: Multiwave Experimental Evidence for UK GDP," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(1), pages 81-114, February.
    See citations under working paper version above.
  5. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2023. "Reconciled Estimates of Monthly GDP in the United States," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 563-577, April.

    Cited by:

    1. Varga, Katalin & Szendrei, Tibor, 2025. "Non-stationary financial risk factors and macroeconomic vulnerability for the UK," International Review of Financial Analysis, Elsevier, vol. 97(C).
    2. Yonggeun Jung, 2025. "Machine Learning-Based Estimation of Monthly GDP," Papers 2506.14078, arXiv.org.
    3. Yannic Stucki, 2022. "Measuring Swiss employment growth: a measurement-error approach," Working Papers 2022-11, Swiss National Bank.
    4. Sheng, Xin & Gupta, Rangan & Cepni, Oguzhan, 2024. "Time-Varying effects of extreme weather shocks on output growth of the United States," Finance Research Letters, Elsevier, vol. 70(C).
    5. Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Forecasting Growth-at-Risk of the United States: Housing Price versus Housing Sentiment or Attention," Working Papers 202401, University of Pretoria, Department of Economics.

  6. James Mitchell & Martin Weale, 2023. "Censored density forecasts: Production and evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 714-734, August.
    See citations under working paper version above.
  7. Hana Braitsch & James Mitchell, 2022. "A New Measure of Consumers’ (In)Attention to Inflation," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2022(14), pages 1-7, October.

    Cited by:

    1. Carola Binder & Rupal Kamdar & Jane M. Ryngaert, 2024. "Partisan Expectations and COVID-Era Inflation," NBER Working Papers 32650, National Bureau of Economic Research, Inc.

  8. Koop, Gary & McIntyre, Stuart & Mitchell, James & Poon, Aubrey, 2021. "Nowcasting ‘True’ Monthly U.S. Gdp During The Pandemic," National Institute Economic Review, National Institute of Economic and Social Research, vol. 256, pages 44-70, April.
    See citations under working paper version above.
  9. Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.

    Cited by:

    1. Łukasz Lenart & Justyna Mokrzycka-Gajda, 2025. "Imitated student’s t distribution: a Bayesian approach," Statistical Papers, Springer, vol. 66(4), pages 1-44, June.
    2. Zhao, Yongchen, 2024. "Uncertainty of household inflation expectations: Reconciling point and density forecasts," Economics Letters, Elsevier, vol. 234(C).
    3. Fabrizio Iacone & Luca Rossini & Andrea Viselli, 2024. "Comparing predictive ability in presence of instability over a very short time," Papers 2405.11954, arXiv.org.
    4. Bańbura, Marta & Leiva-León, Danilo & Menz, Jan-Oliver, 2021. "Do inflation expectations improve model-based inflation forecasts?," Discussion Papers 48/2021, Deutsche Bundesbank.
    5. Ganics, Gergely & Mertens, Elmar & Clark, Todd E., 2023. "What Is the Predictive Value of SPF Point and Density Forecasts?," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277622, Verein für Socialpolitik / German Economic Association.
    6. Milan Szabo, 2024. "Disciplining growth‐at‐risk models with survey of professional forecasters and Bayesian quantile regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1975-1981, September.
    7. Huber, Florian & Onorante, Luca & Pfarrhofer, Michael, 2024. "Forecasting euro area inflation using a huge panel of survey expectations," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1042-1054.
    8. Pedersen, Michael, 2025. "Judgment in macroeconomic output growth predictions: Efficiency, accuracy and persistence," International Journal of Forecasting, Elsevier, vol. 41(2), pages 475-486.
    9. Adämmer, Philipp & Prüser, Jan & Schüssler, Rainer A., 2025. "Forecasting macroeconomic tail risk in real time: Do textual data add value?," International Journal of Forecasting, Elsevier, vol. 41(1), pages 307-320.
    10. Bańbura, Marta & Brenna, Federica & Paredes, Joan & Ravazzolo, Francesco, 2021. "Combining Bayesian VARs with survey density forecasts: does it pay off?," Working Paper Series 2543, European Central Bank.

  10. Mazzi Gian Luigi & Mitchell James & Carausu Florabela, 2021. "Measuring and Communicating the Uncertainty in Official Economic Statistics," Journal of Official Statistics, Sciendo, vol. 37(2), pages 289-316, June.

    Cited by:

    1. Călin Vâlsan & Elena Druică & Zizi Goschin & Rodica Ianole-Călin, 2024. "The Perception of Economic Growth and the Romanian “Mioritic Syndrome”," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 3718-3739, March.

  11. Koop, Gary & McIntyre, Stuart & Mitchell, James & Poon, Aubrey, 2020. "Reconciled Estimates And Nowcasts Of Regional Output In The Uk," National Institute Economic Review, National Institute of Economic and Social Research, vol. 253, pages 44-59, August.

    Cited by:

    1. Chadha, Jagjit S., 2023. "Foreword," National Institute Global Economic Outlook, National Institute of Economic and Social Research, issue 9, pages 1-3.
    2. Niesr, 2021. "Overview," National Institute UK Economic Outlook, National Institute of Economic and Social Research, issue 2, pages 1-4.
    3. Lehmann, Robert & Wikman, Ida, 2022. "Quarterly GDP Estimates for the German States," MPRA Paper 112642, University Library of Munich, Germany.
    4. Kucuk, Hande & Lenoel, Cyrille & MacQueen, Rory, 2021. "UK sectoral output," National Institute UK Economic Outlook, National Institute of Economic and Social Research, issue 2, pages 33-41.
    5. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022. "Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates," Working Papers 22-06, Federal Reserve Bank of Cleveland.
    6. Mehmet Balcilar & David Gabauer & Rangan Gupta & Christian Pierdzioch, 2022. "Uncertainty and forecastability of regional output growth in the UK: Evidence from machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1049-1064, September.
    7. Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas & Irena Pekarskiene, 2024. "Future directions in nowcasting economic activity: A systematic literature review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1199-1233, September.
    8. Niesr, 2021. "Appendix," National Institute UK Economic Outlook, National Institute of Economic and Social Research, issue 2, pages 58-66.
    9. Bhattacharjee, Arnab & Lisauskaite, Elena & Pabst, Adrian & Tzendrei, Tibor, 2021. "UK Regional Outlook," National Institute UK Economic Outlook, National Institute of Economic and Social Research, issue 3, pages 37-50.
    10. Kucuk, Hande & Lenoel, Cyrille & MacQueen, Rory, 2021. "Brisk but not better growth," National Institute UK Economic Outlook, National Institute of Economic and Social Research, issue 2, pages 5-32.
    11. Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna & Mark E. Wohar, 2021. "Uncertainty and Predictability of Real Housing Returns in the United Kingdom: A Regional Analysis," Working Papers 202102, University of Pretoria, Department of Economics.

  12. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.

    Cited by:

    1. Chadha, Jagjit S., 2023. "Foreword," National Institute Global Economic Outlook, National Institute of Economic and Social Research, issue 9, pages 1-3.
    2. Joshua C. C. Chan, 2024. "BVARs and stochastic volatility," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67, Edward Elgar Publishing.
    3. Robert Lehmann, 2024. "A real-time regional accounts database for Germany with applications to GDP revisions and nowcasting," Empirical Economics, Springer, vol. 67(2), pages 817-838, August.
    4. Friederike Fourné & Robert Lehmann, 2023. "From Shopping to Statistics: Tracking and Nowcasting Private Consumption Expenditures in Real-Time," CESifo Working Paper Series 10764, CESifo.
    5. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022. "Reconciled Estimates of Monthly GDP in the US," Working Papers 22-01, Federal Reserve Bank of Cleveland.
    6. Florian, Huber & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2021. "Nowcasting in a Pandemic using Non-Parametric Mixed Frequency VARs," JRC Working Papers in Economics and Finance 2021-01, Joint Research Centre, European Commission.
    7. Martin Feldkircher & Florian Huber & Michael Pfarrhofer, 2020. "Measuring the Effectiveness of US Monetary Policy during the COVID-19 Recession," Papers 2007.15419, arXiv.org.
    8. Niesr, 2021. "Overview," National Institute UK Economic Outlook, National Institute of Economic and Social Research, issue 2, pages 1-4.
    9. Lehmann, Robert & Wikman, Ida, 2022. "Quarterly GDP Estimates for the German States," MPRA Paper 112642, University Library of Munich, Germany.
    10. Robert Lehmann & Sascha Möhrle, 2024. "Forecasting regional industrial production with novel high‐frequency electricity consumption data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1918-1935, September.
    11. Mehmet Balcilar & David Gabauer & Rangan Gupta & Christian Pierdzioch, 2021. "Uncertainty and Forecastability of Regional Output Growth in the United Kingdom: Evidence from Machine Learning," Working Papers 202111, University of Pretoria, Department of Economics.
    12. Paker, Meredith M., 2023. "The jobless recovery after the 1980–1981 British recession," Explorations in Economic History, Elsevier, vol. 90(C).
    13. Kucuk, Hande & Lenoel, Cyrille & MacQueen, Rory, 2021. "UK sectoral output," National Institute UK Economic Outlook, National Institute of Economic and Social Research, issue 2, pages 33-41.
    14. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022. "Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates," Working Papers 22-06, Federal Reserve Bank of Cleveland.
    15. Luca Barbaglia & Lorenzo Frattarolo & Niko Hauzenberger & Dominik Hirschbuehl & Florian Huber & Luca Onorante & Michael Pfarrhofer & Luca Tiozzo Pezzoli, 2024. "Nowcasting economic activity in European regions using a mixed-frequency dynamic factor model," Papers 2401.10054, arXiv.org.
    16. Blagov, Boris & Müller, Henrik & Jentsch, Carsten & Schmidt, Torsten, 2021. "The investment narrative: Improving private investment forecasts with media data," Ruhr Economic Papers 921, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    17. Mehmet Balcilar & David Gabauer & Rangan Gupta & Christian Pierdzioch, 2022. "Uncertainty and forecastability of regional output growth in the UK: Evidence from machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1049-1064, September.
    18. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    19. Florian Eckert & Philipp Kronenberg & Heiner Mikosch & Stefan Neuwirth, 2025. "Tracking Economic Activity With Alternative High‐Frequency Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(3), pages 270-290, April.
    20. Matteo Iacopini & Aubrey Poon & Luca Rossini & Dan Zhu, 2022. "Bayesian Mixed-Frequency Quantile Vector Autoregression: Eliciting tail risks of Monthly US GDP," Papers 2209.01910, arXiv.org.
    21. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    22. Chan, Joshua C.C. & Poon, Aubrey & Zhu, Dan, 2023. "High-dimensional conditionally Gaussian state space models with missing data," Journal of Econometrics, Elsevier, vol. 236(1).
    23. Deborah Gefang & Gary Koop & Aubrey Poon, "undated". "Computationally Efficient Inference in Large Bayesian Mixed Frequency VARs," Discussion Papers in Economics 20/02, Division of Economics, School of Business, University of Leicester.
    24. Niesr, 2021. "Appendix," National Institute UK Economic Outlook, National Institute of Economic and Social Research, issue 2, pages 58-66.
    25. Bhattacharjee, Arnab & Lisauskaite, Elena & Pabst, Adrian & Tzendrei, Tibor, 2021. "UK Regional Outlook," National Institute UK Economic Outlook, National Institute of Economic and Social Research, issue 3, pages 37-50.
    26. Robert Lehmann, 2020. "The Forecasting Power of the ifo Business Survey," CESifo Working Paper Series 8291, CESifo.
    27. Joshua C. C. Chan, 2022. "Comparing Stochastic Volatility Specifications for Large Bayesian VARs," Papers 2208.13255, arXiv.org.
    28. Haoqi Qian & Zhengyu Shi & Libo Wu, 2021. "Inferring Economic Condition Uncertainty from Electricity Big Data," Papers 2107.11593, arXiv.org, revised May 2023.
    29. Bai, Yu & Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2022. "Macroeconomic Forecasting in a Multi-country Context," CEPR Discussion Papers 16994, C.E.P.R. Discussion Papers.
    30. Josh Martin & Rebecca Riley, 2025. "Productivity measurement: Reassessing the production function from micro to macro," Journal of Economic Surveys, Wiley Blackwell, vol. 39(1), pages 246-279, February.
    31. Kucuk, Hande & Lenoel, Cyrille & MacQueen, Rory, 2021. "Brisk but not better growth," National Institute UK Economic Outlook, National Institute of Economic and Social Research, issue 2, pages 5-32.
    32. Proietti, Tommaso & Giovannelli, Alessandro & Ricchi, Ottavio & Citton, Ambra & Tegami, Christían & Tinti, Cristina, 2021. "Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1376-1398.

  13. Gary Koop & Stuart McIntyre & James Mitchell, 2020. "UK regional nowcasting using a mixed frequency vector auto‐regressive model with entropic tilting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 91-119, January.

    Cited by:

    1. Joshua C. C. Chan, 2024. "BVARs and stochastic volatility," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67, Edward Elgar Publishing.
    2. Martin Feldkircher & Florian Huber & Michael Pfarrhofer, 2020. "Measuring the Effectiveness of US Monetary Policy during the COVID-19 Recession," Papers 2007.15419, arXiv.org.
    3. Lehmann, Robert & Wikman, Ida, 2022. "Quarterly GDP Estimates for the German States," MPRA Paper 112642, University Library of Munich, Germany.
    4. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    5. Robert Lehmann & Sascha Möhrle, 2024. "Forecasting regional industrial production with novel high‐frequency electricity consumption data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1918-1935, September.
    6. Mehmet Balcilar & David Gabauer & Rangan Gupta & Christian Pierdzioch, 2021. "Uncertainty and Forecastability of Regional Output Growth in the United Kingdom: Evidence from Machine Learning," Working Papers 202111, University of Pretoria, Department of Economics.
    7. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022. "Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates," Working Papers 22-06, Federal Reserve Bank of Cleveland.
    8. Mehmet Balcilar & David Gabauer & Rangan Gupta & Christian Pierdzioch, 2022. "Uncertainty and forecastability of regional output growth in the UK: Evidence from machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1049-1064, September.
    9. Fosten, Jack & Nandi, Shaoni, 2025. "Nowcasting U.S. state-level CO2 emissions and energy consumption," International Journal of Forecasting, Elsevier, vol. 41(1), pages 20-30.
    10. Michael Beenstock & Daniel Felsenstein, 2021. "A Solution for Absent Spatial Data: The Common Correlated Effects Estimator," International Regional Science Review, , vol. 44(3-4), pages 466-484, May.
    11. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
    12. Li Zhe & Serhat Yüksel & Hasan Dinçer & Shahriyar Mukhtarov & Mayis Azizov, 2021. "The Positive Influences of Renewable Energy Consumption on Financial Development and Economic Growth," SAGE Open, , vol. 11(3), pages 21582440211, August.

  14. James Mitchell & Donald Robertson & Stephen Wright, 2019. "R2 Bounds for Predictive Models: What Univariate Properties Tell us About Multivariate Predictability," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 681-695, October.
    See citations under working paper version above.
  15. Kapetanios, G. & Mitchell, J. & Price, S. & Fawcett, N., 2015. "Generalised density forecast combinations," Journal of Econometrics, Elsevier, vol. 188(1), pages 150-165.
    See citations under working paper version above.
  16. Gian Luigi Mazzi & James Mitchell & Gaetana Montana, 2014. "Density Nowcasts and Model Combination: Nowcasting Euro-Area GDP Growth over the 2008–09 Recession," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 233-256, April.

    Cited by:

    1. Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2015. "EuroMInd-D: A Density Estimate of Monthly Gross Domestic Product for the Euro Area," CREATES Research Papers 2015-12, Department of Economics and Business Economics, Aarhus University.
    2. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    3. Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.
    4. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    5. Grant Allan & Gary Koop & Stuart McIntyre & Paul Smith, 2019. "Nowcasting Using Mixed Frequency Methods: An Application to the Scottish Economy," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 12-45, September.
    6. Boriss Siliverstovs, 2019. "Assessing Nowcast Accuracy of US GDP Growth in Real Time: The Role of Booms and Busts," Working Papers 2019/01, Latvijas Banka.
    7. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
    8. Kiss, Tamás & Mazur, Stepan & Nguyen, Hoang & Österholm, Pär, 2021. "Modelling the Relation between the US Real Economy and the Corporate Bond-Yield Spread in Bayesian VARs with non-Gaussian Disturbances," Working Papers 2021:9, Örebro University, School of Business.
    9. Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2020. "Nowcasting Norwegian household consumption with debit card transaction data," Working Paper 2020/17, Norges Bank.
    10. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
    11. Diego Fresoli, 2024. "Spanish GDP short-term point and density forecasting using a mixed-frequency dynamic factor model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 15(2), pages 145-177, June.
    12. McAdam, Peter & Warne, Anders, 2020. "Density forecast combinations: the real-time dimension," Working Paper Series 2378, European Central Bank.
    13. Pablo Aguilar & Corinna Ghirelli & Matías Pacce & Alberto Urtasun, 2020. "Can news help measure economic sentiment? An application in COVID-19 times," Working Papers 2027, Banco de España.
    14. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    15. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    16. Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2024. "Nowcasting Norwegian household consumption with debit card transaction data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1220-1244, November.
    17. Clark, Todd E. & Doh, Taeyoung, 2014. "Evaluating alternative models of trend inflation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 426-448.

  17. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Measuring output gap nowcast uncertainty," International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.
    See citations under working paper version above.
  18. Kapetanios, George & Mitchell, James & Shin, Yongcheol, 2014. "A nonlinear panel data model of cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 179(2), pages 134-157.
    See citations under working paper version above.
  19. James Mitchell & Richard J. Smith & Martin R. Weale, 2013. "Efficient Aggregation Of Panel Qualitative Survey Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 580-603, June.
    See citations under working paper version above.
  20. Mitchell, James & Solomou, Solomos & Weale, Martin, 2012. "Monthly GDP estimates for inter-war Britain," Explorations in Economic History, Elsevier, vol. 49(4), pages 543-556.
    See citations under working paper version above.
  21. Silvia Lui & James Mitchell & Martin Weale, 2011. "Qualitative business surveys: signal or noise?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 327-348, April.
    See citations under working paper version above.
  22. James Mitchell & Kenneth F. Wallis, 2011. "Evaluating density forecasts: forecast combinations, model mixtures, calibration and sharpness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 1023-1040, September.

    Cited by:

    1. Carola Conces Binder & Rodrigo Sekkel, 2023. "Central Bank Forecasting: A Survey," Staff Working Papers 23-18, Bank of Canada.
    2. Antonello D'Agostino & Domenico Giannone & Michele Lenza & Michele Modugno, 2015. "Nowcasting Business Cycles: a Bayesian Approach to Dynamic Heterogeneous Factor Models," Finance and Economics Discussion Series 2015-66, Board of Governors of the Federal Reserve System (U.S.).
    3. Francesco Ravazzolo & Shaun P. Vahey, 2010. "Forecast densities for economic aggregates from disaggregate ensembles," Working Paper 2010/02, Norges Bank.
    4. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Post-Print halshs-02505861, HAL.
    5. Gloria Gonzalez-Rivera & Joao Henrique Mazzeu & Esther Ruiz & Helena Veiga, 2017. "A Bootstrap Approach for Generalized Autocontour Testing. Implications for VIX Forecast Densities," Working Papers 201709, University of California at Riverside, Department of Economics.
    6. Kolasa, Marcin & Rubaszek, Michał, 2014. "Forecasting with DSGE models with financial frictions," Dynare Working Papers 40, CEPREMAP.
    7. James Mitchell & Aubrey Poon & Dan Zhu, 2022. "Constructing Density Forecasts from Quantile Regressions: Multimodality in Macro-Financial Dynamics," Working Papers 22-12R, Federal Reserve Bank of Cleveland, revised 11 Apr 2023.
    8. Nalban, Valeriu, 2018. "Forecasting with DSGE models: What frictions are important?," Economic Modelling, Elsevier, vol. 68(C), pages 190-204.
    9. Harvey, Andrew & Palumbo, Dario, 2023. "Score-driven models for realized volatility," Journal of Econometrics, Elsevier, vol. 237(2).
    10. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    11. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    12. Wojciech CHAREMZA & Carlos DÍAZ & Svetlana MAKAROVA, 2019. "Conditional Term Structure of Inflation Forecast Uncertainty: The Copula Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 5-18, March.
    13. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    14. Zeyyad Mandalinci, 2015. "Forecasting Inflation in Emerging Markets: An Evaluation of Alternative Models," CReMFi Discussion Papers 3, CReMFi, School of Economics and Finance, QMUL.
    15. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Density characteristics and density forecast performance: a panel analysis," Empirical Economics, Springer, vol. 48(3), pages 1203-1231, May.
    16. Mihail Yanchev, 2025. "Interval, Quantile and Density Forecasts," Economic Alternatives, University of National and World Economy, Sofia, Bulgaria, issue 1, pages 109-129, March.
    17. Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial Conditions and Density Forecasts for US Output and Inflation," Working Papers 715, Queen Mary University of London, School of Economics and Finance.
    18. Knüppel, Malte, 2011. "Evaluating the calibration of multi-step-ahead density forecasts using raw moments," Discussion Paper Series 1: Economic Studies 2011,32, Deutsche Bundesbank.
    19. Kiss, Tamás & Nguyen, Hoang & Österholm, Pär, 2020. "Modelling Returns in US Housing Prices – You’re the One for Me, Fat Tails," Working Papers 2020:13, Örebro University, School of Business.
    20. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    21. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    22. Dovern, Jonas & Manner, Hans, 2016. "Robust Evaluation of Multivariate Density Forecasts," VfS Annual Conference 2016 (Augsburg): Demographic Change 145547, Verein für Socialpolitik / German Economic Association.
    23. Barbara Rossi & Tatevik Sekhposyan, 2013. "Evaluating predictive densities of U.S. output growth and inflation in a large macroeconomic data set," Economics Working Papers 1370, Department of Economics and Business, Universitat Pompeu Fabra.
    24. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    25. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, Enero-Abr.
    26. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
    27. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2015. "Bayesian nonparametric calibration and combination of predictive distributions," Working Paper 2015/03, Norges Bank.
    28. Galvão, Ana Beatriz, 2017. "Data revisions and DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 215-232.
    29. Emilio Zanetti Chini, 2018. "Forecaster’s utility and forecasts coherence," DEM Working Papers Series 145, University of Pavia, Department of Economics and Management.
    30. Labonne, Paul, 2025. "Asymmetric uncertainty: Nowcasting using skewness in real-time data," International Journal of Forecasting, Elsevier, vol. 41(1), pages 229-250.
    31. Marc-Oliver Pohle, 2020. "The Murphy Decomposition and the Calibration-Resolution Principle: A New Perspective on Forecast Evaluation," Papers 2005.01835, arXiv.org.
    32. Todd E. Clark & Edward S. Knotek & Saeed Zaman, 2015. "Measuring Inflation Forecast Uncertainty," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2015(03), pages 1-6, March.
    33. Tsyplakov, Alexander, 2014. "Theoretical guidelines for a partially informed forecast examiner," MPRA Paper 55017, University Library of Munich, Germany.
    34. Manzan, Sebastiano & Zerom, Dawit, 2009. "Are Macroeconomic Variables Useful for Forecasting the Distribution of U.S. Inflation?," MPRA Paper 14387, University Library of Munich, Germany.
    35. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
    36. Diego Fresoli, 2024. "Spanish GDP short-term point and density forecasting using a mixed-frequency dynamic factor model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 15(2), pages 145-177, June.
    37. Gian Luigi Mazzi & James Mitchell & Gaetana Montana, 2014. "Density Nowcasts and Model Combination: Nowcasting Euro-Area GDP Growth over the 2008–09 Recession," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 233-256, April.
    38. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    39. Knüppel, Malte & Schultefrankenfeld, Guido, 2013. "The empirical (ir)relevance of the interest rate assumption for central bank forecasts," Discussion Papers 11/2013, Deutsche Bundesbank.
    40. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damages," Working Papers 2020-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    41. Andres, P. & Harvey, A., 2012. "The Dyanamic Location/Scale Model: with applications to intra-day financial data," Cambridge Working Papers in Economics 1240, Faculty of Economics, University of Cambridge.
    42. Andres, Philipp, 2014. "Maximum likelihood estimates for positive valued dynamic score models; The DySco package," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 34-42.
    43. Boriss Siliverstovs, 2013. "Do business tendency surveys help in forecasting employment?: A real-time evidence for Switzerland," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 129-151.
    44. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    45. Mansoor Maitah & Daniel Toth & Elena Kuzmenko & Karel r dl & Helena Rezbov & Petra nov, 2016. "Forecast of Employment in Switzerland: The Macroeconomic View," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 132-138.
    46. Andres Trujillo-Barrera & Philip Garcia & Mindy L Mallory, 2018. "Short-term price density forecasts in the lean hog futures market," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 121-142.
    47. Ito, Ryoko, 2013. "Modeling Dynamic Diurnal Patterns in High-Frequency Financial Data," Cambridge Working Papers in Economics 1315, Faculty of Economics, University of Cambridge.
    48. Gergely Akos Ganics, 2017. "Optimal density forecast combinations," Working Papers 1751, Banco de España.
    49. Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial indicators and density forecasts for US output and inflation," Temi di discussione (Economic working papers) 977, Bank of Italy, Economic Research and International Relations Area.
    50. Taylor, James W., 2020. "A strategic predictive distribution for tests of probabilistic calibration," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1380-1388.
    51. Shaun P Vahey & Elizabeth C Wakerly, 2013. "Moving towards probability forecasting," BIS Papers chapters, in: Bank for International Settlements (ed.), Globalisation and inflation dynamics in Asia and the Pacific, volume 70, pages 3-8, Bank for International Settlements.
    52. Tsyplakov, Alexander, 2013. "Evaluation of Probabilistic Forecasts: Proper Scoring Rules and Moments," MPRA Paper 45186, University Library of Munich, Germany.
    53. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    54. Alexander Tsyplakov, 2012. "Assessment of probabilistic forecasts: Proper scoring rules and moments," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 27(3), pages 115-132.
    55. Djennad, Abdelmajid & Rigby, Robert & Stasinopoulos, Dimitrios & Voudouris, Vlasios & Eilers, Paul, 2015. "Beyond location and dispersion models: The Generalized Structural Time Series Model with Applications," MPRA Paper 62807, University Library of Munich, Germany.
    56. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    57. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02505861, HAL.
    58. Jonas Dovern & Hans Manner, 2018. "Order Invariant Tests for Proper Calibration of Multivariate Density Forecasts," CESifo Working Paper Series 7023, CESifo.
    59. Kenneth C. Lichtendahl & Yael Grushka-Cockayne & Robert L. Winkler, 2013. "Is It Better to Average Probabilities or Quantiles?," Management Science, INFORMS, vol. 59(7), pages 1594-1611, July.
    60. Justyna Wróblewska & Anna Pajor, 2019. "One-period joint forecasts of Polish inflation, unemployment and interest rate using Bayesian VEC-MSF models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 11(1), pages 23-45, March.
    61. Paul Labonne, 2022. "Asymmetric Uncertainty: Nowcasting Using Skewness in Real-time Data," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-23, Economic Statistics Centre of Excellence (ESCoE).
    62. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Measuring output gap nowcast uncertainty," International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.
    63. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Can Macroeconomists Forecast Risk? Event-Based Evidence from the Euro-Area SPF," International Journal of Central Banking, International Journal of Central Banking, vol. 11(4), pages 1-46, December.
    64. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Online Appendix to "Financial conditions and density forecasts for US output and inflation"," Online Appendices 14-103, Review of Economic Dynamics.
    65. Dovern, Jonas & Manner, Hans, 2016. "Order Invariant Evaluation of Multivariate Density Forecasts," Working Papers 0608, University of Heidelberg, Department of Economics.
    66. O'Brien, Martin & Velasco, Sofia, 2020. "Unobserved components models with stochastic volatility for extracting trends and cycles in credit," Research Technical Papers 09/RT/20, Central Bank of Ireland.
    67. Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
    68. Jorge Fornero & Andrés Gatty, 2020. "Back testing fan charts of activity and inflation: the Chilean case," Working Papers Central Bank of Chile 881, Central Bank of Chile.
    69. Cobb, Marcus P A, 2017. "Aggregate Density Forecasting from Disaggregate Components Using Large VARs," MPRA Paper 76849, University Library of Munich, Germany.

  23. Lui, Silvia & Mitchell, James & Weale, Martin, 2011. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1128-1146, October.
    See citations under working paper version above.
  24. Wolden Bache, Ida & Sofie Jore, Anne & Mitchell, James & Vahey, Shaun P., 2011. "Combining VAR and DSGE forecast densities," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1659-1670, October.
    See citations under working paper version above.
  25. James Mitchell & Nigel Pain & Rebecca Riley, 2011. "The drivers of international migration to the UK: A panel‐based Bayesian model averaging approach," Economic Journal, Royal Economic Society, vol. 121(557), pages 1398-1444, December.

    Cited by:

    1. Protte, Benjamin, 2012. "How does Economic Integration Change Personal Income Taxation? Evidence from a new Index of Potential Labor Mobility," Working Papers 12-20, University of Mannheim, Department of Economics.
    2. Christie Smith & Christoph Thoenissen, 2018. "Migration and Business Cycle Dynamics," Working Papers 2018006, The University of Sheffield, Department of Economics.
    3. Rockey, James & Temple, Jonathan, 2016. "Growth econometrics for agnostics and true believers," European Economic Review, Elsevier, vol. 81(C), pages 86-102.
    4. Mathias Czaika & Hein De Haas, 2013. "The Effectiveness of Immigration Policies," Population and Development Review, The Population Council, Inc., vol. 39(3), pages 487-508, September.
    5. Mariam Camarero & Laura Montolio & Cecilio Tamarit, 2019. "Determinants of German outward FDI: variable selection using Bayesian statistical," Working Papers 1906, Department of Applied Economics II, Universidad de Valencia.
    6. Smith, Christie & Thoenissen, Christoph, 2019. "Skilled migration and business cycle dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    7. Mariam Camarero & Laura Montolio & Cecilio Tamarit, 2019. "Alternative Estimators For The Fdi Gravity Model: An Application To German Outward Fdi," Working Papers 1907, Department of Applied Economics II, Universidad de Valencia.
    8. Yufei Lin & Yingxia Pu & Xinyi Zhao & Guangqing Chi & Cui Ye, 2023. "The Spatiotemporal Elasticity of Age Structure in China’s Interprovincial Migration System," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    9. Silvia Angeloni & Francesco Maria Spano, 2018. "Asylum Seekers in Europe: Issues and Solutions," Journal of International Migration and Integration, Springer, vol. 19(2), pages 473-495, May.
    10. Camarero, Mariam & Montolio, Laura & Tamarit, Cecilio, 2019. "What drives German foreign direct investment? New evidence using Bayesian statistical techniques," Economic Modelling, Elsevier, vol. 83(C), pages 326-345.
    11. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.

  26. Garratt, Anthony & Mitchell, James & Vahey, Shaun P. & Wakerly, Elizabeth C., 2011. "Real-time inflation forecast densities from ensemble Phillips curves," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 77-87, January.
    See citations under working paper version above.
  27. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    See citations under working paper version above.
  28. Troy D. Matheson & James Mitchell & Brian Silverstone, 2010. "Nowcasting and predicting data revisions using panel survey data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 313-330.

    Cited by:

    1. Chrystalleni Aristidou & Kevin Lee & Kalvinder Shields, 2015. "Real-Time Data should be used in Forecasting Output Growth and Recessionary Events in the US," Discussion Papers 2015/13, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    2. Kjetil Martinsen & Francesco Ravazzolo & Fredrik Wulfsberg, 2011. "Forecasting macroeconomic variables using disaggregate survey data," Working Paper 2011/04, Norges Bank.
    3. Fornaro, Paolo, 2016. "Predicting Finnish economic activity using firm-level data," International Journal of Forecasting, Elsevier, vol. 32(1), pages 10-19.
    4. Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas & Irena Pekarskiene, 2024. "Future directions in nowcasting economic activity: A systematic literature review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1199-1233, September.
    5. Paolo Fornaro & Henri Luomaranta, 2020. "Nowcasting Finnish real economic activity: a machine learning approach," Empirical Economics, Springer, vol. 58(1), pages 55-71, January.
    6. Boysen-Hogrefe, Jens & Neuwirth, Stefan, 2012. "The impact of seasonal and price adjustments on the predictability of German GDP revisions," Kiel Working Papers 1753, Kiel Institute for the World Economy (IfW Kiel).
    7. Dr Silvia Lui & Dr Martin Weale & Dr. James Mitchell, 2009. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," National Institute of Economic and Social Research (NIESR) Discussion Papers 343, National Institute of Economic and Social Research.
    8. Sayag, Doron & Ben-hur, Dano & Pfeffermann, Danny, 2022. "Reducing revisions in hedonic house price indices by the use of nowcasts," International Journal of Forecasting, Elsevier, vol. 38(1), pages 253-266.
    9. Guizzardi, Andrea & Stacchini, Annalisa, 2015. "Real-time forecasting regional tourism with business sentiment surveys," Tourism Management, Elsevier, vol. 47(C), pages 213-223.

  29. Mitchell, James, 2009. "Where are we now? The UK Recession and Nowcasting GDP Growth Using Statistical Models," National Institute Economic Review, National Institute of Economic and Social Research, vol. 209, pages 60-69, July.

    Cited by:

    1. Anesti, Nikoleta & Galvao, Ana Beatriz & Miranda-Agrippino, Silvia, 2018. "Uncertain kingdom: nowcasting GDP and its revisions," LSE Research Online Documents on Economics 90382, London School of Economics and Political Science, LSE Library.
    2. Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Nowcasting," Working Papers ECARES ECARES 2010-021, ULB -- Universite Libre de Bruxelles.
    3. Smith Paul, 2016. "Nowcasting UK GDP during the depression," Working Papers 1606, University of Strathclyde Business School, Department of Economics.
    4. Steven Trypsteen, 2014. "The Importance of a Time-Varying Variance and Cross-Country Interactions in Forecast Models," Discussion Papers 2014/15, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    5. Assarsson, Bengt & Österholm, Pär, 2015. "Do Swedish Consumer Confidence Indicators Do What They Are Intended to Do?," Working Papers 139, National Institute of Economic Research.
    6. Nikoleta Anesti & Ana Beatriz Galvão & Silvia Miranda‐Agrippino, 2022. "Uncertain Kingdom: Nowcasting Gross Domestic Product and its revisions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 42-62, January.
    7. Ana Beatriz Galvão & Marta Lopresto, 2020. "Real-time Probabilistic Nowcasts of UK Quarterly GDP Growth using a Mixed-Frequency Bottom-up Approach," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-06, Economic Statistics Centre of Excellence (ESCoE).
    8. Jennifer Castle & David Hendry & Oleg Kitov, 2013. "Forecasting and Nowcasting Macroeconomic Variables: A Methodological Overview," Economics Series Working Papers 674, University of Oxford, Department of Economics.
    9. Maria Billstam & Kristina Frändén & Johan Samuelsson & Pär Österholm, 2017. "Quasi-Real-Time Data of the Economic Tendency Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 105-138, May.
    10. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
    11. P�r Österholm, 2014. "Survey data and short-term forecasts of Swedish GDP growth," Applied Economics Letters, Taylor & Francis Journals, vol. 21(2), pages 135-139, January.
    12. Christopher Adam & David Cobham, 2009. "Using Real-Time Output Gaps To Examine Past And Future Policy Choices," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210(1), pages 98-110, October.
    13. Kate Stratford, 2013. "Nowcasting world GDP and trade using global indicators," Bank of England Quarterly Bulletin, Bank of England, vol. 53(3), pages 233-242.

  30. Holmes, Mark J. & Mitchell, James & Silverstone, Brian, 2009. "Architects as Nowcasters of Housing Construction," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210, pages 111-122, October.

    Cited by:

    1. Hamid Baghestani & Ajalavat Viriyavipart, 2019. "Do factors influencing consumer home-buying attitudes explain output growth?," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(5), pages 1104-1115, August.
    2. Gustavo Adolfo HERNANDEZ DIAZ & Margarita MAR�N JARAMILLO, 2016. "Pronóstico del Consumo Privado: Usando datos de alta frecuencia para el pronóstico de variables de baja frecuencia," Archivos de Economía 14828, Departamento Nacional de Planeación.

  31. Ehsan Khoman & James Mitchell & Martin Weale, 2008. "Incidence‐based estimates of life expectancy of the healthy for the UK: coherence between transition probabilities and aggregate life‐tables," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 203-222, January.

    Cited by:

    1. Nicole L. Van Der Gaag & Joop de Beer & Govert Ewout Bijwaard & Luc Bonneux, 2015. "A multistate model to project elderly disability in case of limited data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 32(3), pages 75-106.
    2. William Lim & Gaurav Khemka & David Pitt & Bridget Browne, 2019. "A method for calculating the implied no-recovery three-state transition matrix using observable population mortality incidence and disability prevalence rates among the elderly," Journal of Population Research, Springer, vol. 36(3), pages 245-282, September.
    3. Dorsett, Richard & Lui, Silvia & Weale, Martin, 2014. "Education and its effects on income and mortality of men aged sixty-five and over in Great Britain," Labour Economics, Elsevier, vol. 27(C), pages 71-82.
    4. Dr Silvia Lui & Dr Martin Weale, 2012. "Education and its Effects on Survival, Income and Health of those aged Sixty-five and over in the United Kingdom," National Institute of Economic and Social Research (NIESR) Discussion Papers 393, National Institute of Economic and Social Research.

  32. Mitchell, James & Mouratidis, Kostas & Weale, Martin, 2007. "Uncertainty in UK manufacturing: Evidence from qualitative survey data," Economics Letters, Elsevier, vol. 94(2), pages 245-252, February.
    See citations under working paper version above.
  33. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.

    Cited by:

    1. Buncic, Daniel, 2009. "Understanding forecast failure in ESTAR models of real exchange rates," MPRA Paper 13121, University Library of Munich, Germany.
    2. Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
    3. Čapek, Jan & Crespo Cuaresma, Jesús & Hauzenberger, Niko & Reichel, Vlastimil, 2023. "Macroeconomic forecasting in the euro area using predictive combinations of DSGE models," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1820-1838.
    4. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," LSE Research Online Documents on Economics 87393, London School of Economics and Political Science, LSE Library.
    5. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2015. "Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i03).
    6. Allayioti, Anastasia & Venditti, Fabrizio, 2024. "The role of comovement and time-varying dynamics in forecasting commodity prices," Working Paper Series 2901, European Central Bank.
    7. Mehmet Balcilar & Nico Katzke & Rangan Gupta, 2015. "Do Precious Metal Prices Help in Forecasting South African Inflation?," Working Papers 03/2015, Stellenbosch University, Department of Economics.
    8. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Bayesian Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-003/4, Tinbergen Institute.
    9. Davide Pettenuzzo & Antonio Gargano & Allan Timmermann, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Working Papers 75, Brandeis University, Department of Economics and International Business School.
    10. Laurent Ferrara & Matteo Mogliani & Jean-Guillaume Sahuc, 2020. "High-Frequency Monitoring of Growth-at-Risk," CAMA Working Papers 2020-97, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Ardia, David & Lennart, Hoogerheide & Nienke, Corré, 2011. "Stock index returns’ density prediction using GARCH models: Frequentist or Bayesian estimation?," MPRA Paper 28259, University Library of Munich, Germany.
    12. Lees, Kirdan & Matheson, Troy & Smith, Christie, 2011. "Open economy forecasting with a DSGE-VAR: Head to head with the RBNZ published forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 512-528.
    13. Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2013. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers w0167, New Economic School (NES).
    14. Götz, T.B. & Hecq, A.W. & Urbain, J.R.Y.J., 2014. "Combining distributions of real-time forecasts: An application to U.S. growth," Research Memorandum 027, Maastricht University, Graduate School of Business and Economics (GSBE).
    15. Joshua C.C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2018. "Composite Likelihood Methods for Large Bayesian VARs with Stochastic Volatility," CAMA Working Papers 2018-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    16. Martinez-Martin Jaime & Morris Richard & Onorante Luca & Piersanti Fabio Massimo, 2024. "Merging Structural and Reduced-Form Models for Forecasting," The B.E. Journal of Macroeconomics, De Gruyter, vol. 24(1), pages 399-437, January.
    17. Anne Sofie Jore & James Mitchell & Shaun Vahey, 2008. "Combining Forecast Densities from VARs with Uncertain Instabilities," Reserve Bank of New Zealand Discussion Paper Series DP2008/18, Reserve Bank of New Zealand.
    18. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2010. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Post-Print hal-00732675, HAL.
    19. Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2015. "EuroMInd-D: A Density Estimate of Monthly Gross Domestic Product for the Euro Area," CREATES Research Papers 2015-12, Department of Economics and Business Economics, Aarhus University.
    20. Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2020. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Papers 2012.11649, arXiv.org, revised Jun 2022.
    21. Amisano, Gianni & Geweke, John, 2009. "Optimal Prediction Pools," Working Paper Series 1017, European Central Bank.
    22. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    23. Agnieszka Borowska & Lennart Hoogerheide & Siem Jan Koopman & Herman van Dijk, 2019. "Partially Censored Posterior for Robust and Efficient Risk Evaluation," Tinbergen Institute Discussion Papers 19-057/III, Tinbergen Institute.
    24. Nicholas Fawcett & George Kapetanios & James Mitchell & Simon Price, 2014. "Generalised density forecast combinations," Bank of England working papers 492, Bank of England.
    25. Anthony Garratt & James Mitchell & Shaun P. Vahey & Elizabeth C. Wakerly, 2010. "Real-time Inflation Forecast Densities from Ensemble Phillips Curves," CAMA Working Papers 2010-34, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    26. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in Real-Time: A Density Combination Approach," Working Papers No 1/2011, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    27. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    28. Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Andres Ramirez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Monash Econometrics and Business Statistics Working Papers 33/20, Monash University, Department of Econometrics and Business Statistics.
    29. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
    30. Pär Österholm, 2006. "Incorporating judgement in fan charts," Finance and Economics Discussion Series 2006-39, Board of Governors of the Federal Reserve System (U.S.).
    31. Tony Chernis & Taylor Webley, 2022. "Nowcasting Canadian GDP with Density Combinations," Discussion Papers 2022-12, Bank of Canada.
    32. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an uncertain economic environment," Working Paper 2014/17, Norges Bank.
    33. Thompson, Ryan & Qian, Yilin & Vasnev, Andrey L., 2024. "Flexible global forecast combinations," Omega, Elsevier, vol. 126(C).
    34. Graziano Moramarco, 2025. "Regime‐Switching Density Forecasts Using Economists' Scenarios," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 833-845, March.
    35. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    36. Davide Pettenuzzo & Allan Timmermann, 2017. "Forecasting Macroeconomic Variables Under Model Instability," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 183-201, April.
    37. Tsionas, Mike G., 2022. "Random and Markov switching exponential smoothing models," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    38. Piergiorgio Alessandri & Haroon Mumtaz, 2014. "Financial Conditions and Density Forecasts for US Output and Inflation," Working Papers 715, Queen Mary University of London, School of Economics and Finance.
    39. Kenichiro McAlinn & Kosaku Takanashi, 2019. "Mean-shift least squares model averaging," Papers 1912.01194, arXiv.org.
    40. Abbate, Angela & Marcellino, Massimiliano, 2016. "Point, interval and density forecasts of exchange rates with time-varying parameter models," Discussion Papers 19/2016, Deutsche Bundesbank.
    41. Todd E. Clark & Fabian Krueger & Francesco Ravazzolo, 2015. "Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts," Working Papers (Old Series) 1439, Federal Reserve Bank of Cleveland.
    42. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    43. Hilde C. Bjørnland & Francesco Ravazzolo & Leif Anders Thorsrud, 2015. "Forecasting GDP with global components. This time is different," Working Paper 2015/05, Norges Bank.
    44. Kiss, Tamás & Nguyen, Hoang & Österholm, Pär, 2020. "Modelling Returns in US Housing Prices – You’re the One for Me, Fat Tails," Working Papers 2020:13, Örebro University, School of Business.
    45. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    46. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
    47. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
    48. Ohnsorge,Franziska Lieselotte & Stocker,Marc & Some,Modeste Y., 2016. "Quantifying uncertainties in global growth forecasts," Policy Research Working Paper Series 7770, The World Bank.
    49. Anthony Garratt & James Mitchell & Shaun P. Vahey, 2009. "Measuring Output Gap Uncertainty," Birkbeck Working Papers in Economics and Finance 0909, Birkbeck, Department of Economics, Mathematics & Statistics.
    50. Knut Are Aastveit & Jamie Cross & Herman K. Djik, 2021. "Quantifying time-varying forecast uncertainty and risk for the real price of oil," Working Papers No 03/2021, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    51. Wojciech Charemza & Carlos Díaz & Svetlana Makarova, 2015. "Choosing the Right Skew Normal Distribution: the Macroeconomist’ Dilemma," Discussion Papers in Economics 15/08, Division of Economics, School of Business, University of Leicester.
    52. Dijk, D. van & Diks, C.G.H. & Panchenko, V., 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," CeNDEF Working Papers 08-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    53. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    54. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    55. Buncic, Daniel & Müller, Oliver, 2017. "Measuring the output gap in Switzerland with linear opinion pools," Economic Modelling, Elsevier, vol. 64(C), pages 153-171.
    56. Michal Franta & Jozef Barunik & Roman Horvath & Katerina Smidkova, 2011. "Are Bayesian Fan Charts Useful for Central Banks? Uncertainty, Forecasting, and Financial Stability Stress Tests," Working Papers 2011/10, Czech National Bank, Research and Statistics Department.
    57. Nikolaus Hautsch & Stefan Voigt, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty," Papers 1709.06296, arXiv.org, revised Jun 2018.
    58. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    59. Pauwels, Laurent & Vasnev, Andrey, 2013. "Forecast combination for U.S. recessions with real-time data," Working Papers 02/2013, University of Sydney Business School, Discipline of Business Analytics.
    60. Chernis Tony, 2024. "Combining Large Numbers of Density Predictions with Bayesian Predictive Synthesis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 293-317, April.
    61. He, Yaoyao & Cao, Chaojin & Wang, Shuo & Fu, Hong, 2022. "Nonparametric probabilistic load forecasting based on quantile combination in electrical power systems," Applied Energy, Elsevier, vol. 322(C).
    62. Hugo Gerard & Kristoffer Nimark, 2008. "Combining Multivariate Density Forecasts Using Predictive Criteria," RBA Research Discussion Papers rdp2008-02, Reserve Bank of Australia.
    63. Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2019. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Working Paper 2019/2, Norges Bank.
    64. Cristina Conflitti & Christine De Mol & Domenico Giannone, 2012. "Optimal Combination of Survey Forecasts," Working Papers ECARES ECARES 2012-023, ULB -- Universite Libre de Bruxelles.
    65. Michael S. O’Doherty & N. E. Savin & Ashish Tiwari, 2016. "Evaluating Hedge Funds with Pooled Benchmarks," Management Science, INFORMS, vol. 62(1), pages 69-89, January.
    66. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    67. Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance," PIER Working Paper Archive 14-034, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    68. Wolden Bache, Ida & Sofie Jore, Anne & Mitchell, James & Vahey, Shaun P., 2011. "Combining VAR and DSGE forecast densities," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1659-1670, October.
    69. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    70. Knüppel, Malte & Krüger, Fabian, 2019. "Forecast uncertainty, disagreement, and the linear pool," Discussion Papers 28/2019, Deutsche Bundesbank.
    71. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    72. Richard K. Crump & Domenico Giannone & Sean Hundtofte, 2018. "Changing Risk-Return Profiles," Liberty Street Economics 20181004, Federal Reserve Bank of New York.
    73. Pauwels, Laurent & Radchenko, Peter & Vasnev, Andrey, 2020. "Higher Moment Constraints for Predictive Density Combinations," Working Papers BAWP-2020-01, University of Sydney Business School, Discipline of Business Analytics.
    74. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2015. "Bayesian nonparametric calibration and combination of predictive distributions," Working Paper 2015/03, Norges Bank.
    75. Wagner Piazza Gaglianone & Jaqueline Terra Moura Marins, 2014. "Risk Assessment of the Brazilian FX Rate," Working Papers Series 344, Central Bank of Brazil, Research Department.
    76. David Bolder & Yuliya Romanyuk, 2008. "Combining Canadian Interest-Rate Forecasts," Staff Working Papers 08-34, Bank of Canada.
    77. Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
    78. Trapero, Juan R. & Cardós, Manuel & Kourentzes, Nikolaos, 2019. "Quantile forecast optimal combination to enhance safety stock estimation," International Journal of Forecasting, Elsevier, vol. 35(1), pages 239-250.
    79. Gianni Amisano & Andreas Beyer & Michele Lenza, 2010. "Enhancing monetary analysis," Research Bulletin, European Central Bank, vol. 11, pages 2-6.
    80. Roberto Casarin & Giulia Mantoan & Francesco Ravazzolo, 2016. "Bayesian Calibration of Generalized Pools of Predictive Distributions," Econometrics, MDPI, vol. 4(1), pages 1-24, March.
    81. Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
    82. Paulo M. Sánchez & Luis Fernando Melo, 2013. "Combinación de brechas del producto colombiano," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 31(72), pages 74-82.
    83. Marco Jacopo Lombardi, 2013. "On the correlation between commodity and equity returns: implications for portfolio allocation," BIS Working Papers 420, Bank for International Settlements.
    84. Timmermann, Allan & Pettenuzzo, Davide & Valkanov, Rossen, 2014. "A Bayesian MIDAS Approach to Modeling First and Second Moment Dynamics," CEPR Discussion Papers 10160, C.E.P.R. Discussion Papers.
    85. Tsyplakov, Alexander, 2014. "Theoretical guidelines for a partially informed forecast examiner," MPRA Paper 55017, University Library of Munich, Germany.
    86. Amendola, Alessandra & Christian, Francq, 2009. "Concepts and tools for nonlinear time series modelling," MPRA Paper 15140, University Library of Munich, Germany.
    87. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2023. "A flexible predictive density combination for large financial data sets in regular and crisis periods," Journal of Econometrics, Elsevier, vol. 237(2).
    88. Manzan, Sebastiano & Zerom, Dawit, 2009. "Are Macroeconomic Variables Useful for Forecasting the Distribution of U.S. Inflation?," MPRA Paper 14387, University Library of Munich, Germany.
    89. A. Ford Ramsey & Michael K. Adjemian, 2024. "Forecast combination in agricultural economics: Past, present, and the future," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 46(4), pages 1450-1478, December.
    90. Roberto Casarin & Domenico Sartore & Marco Tronzano, 2018. "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 101-114, January.
    91. Pietro Giorgio Lovaglio, 2025. "Cross‐Learning With Panel Data Modeling for Stacking and Forecast Time Series Employment in Europe," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 753-780, March.
    92. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
    93. Christian Kascha & Francesco Ravazzolo, 2008. "Combining inflation density forecasts," Working Paper 2008/22, Norges Bank.
    94. Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
    95. Stavroula P. Fameliti & Vasiliki D. Skintzi, 2020. "Predictive ability and economic gains from volatility forecast combinations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 200-219, March.
    96. Hilde C. Bjørnland & Karsten Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Does forecast combination improve Norges Bank inflation forecasts?," Working Paper 2009/01, Norges Bank.
    97. Li, Gang & Wu, Doris Chenguang & Zhou, Menglin & Liu, Anyu, 2019. "The combination of interval forecasts in tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 363-378.
    98. Antonio Bello & Derek Bunn & Javier Reneses & Antonio Muñoz, 2016. "Parametric Density Recalibration of a Fundamental Market Model to Forecast Electricity Prices," Energies, MDPI, vol. 9(11), pages 1-15, November.
    99. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
    100. Roberto Casarin & Fabrizio Leisen & German Molina & Enrique ter Horst, 2014. "A Bayesian Beta Markov Random Field Calibration of the Term Structure of Implied Risk Neutral Densities," Papers 1409.1956, arXiv.org.
    101. K=osaku Takanashi & Kenichiro McAlinn, 2019. "Equivariant online predictions of non-stationary time series," Papers 1911.08662, arXiv.org, revised Jun 2023.
    102. Zanetti Chini, Emilio, 2025. "Judgment can spur long memory," Journal of Economic Dynamics and Control, Elsevier, vol. 170(C).
    103. McAdam, Peter & Warne, Anders, 2020. "Density forecast combinations: the real-time dimension," Working Paper Series 2378, European Central Bank.
    104. Gian Luigi Mazzi & James Mitchell & Gaetana Montana, 2014. "Density Nowcasts and Model Combination: Nowcasting Euro-Area GDP Growth over the 2008–09 Recession," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 233-256, April.
    105. Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251, April.
    106. Szabolcs Deák & Paul Levine & Afrasiab Mirza & Joseph Pearlman, 2019. "Designing Robust Monetary Policy Using Prediction Pools," School of Economics Discussion Papers 1219, School of Economics, University of Surrey.
    107. Benjamin Avanzi & Yanfeng Li & Bernard Wong & Alan Xian, 2022. "Ensemble distributional forecasting for insurance loss reserving," Papers 2206.08541, arXiv.org, revised Jun 2024.
    108. Yi-Ting Chen & Chu-An Liu, 2021. "Model Averaging for Asymptotically Optimal Combined Forecasts," IEAS Working Paper : academic research 21-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    109. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    110. Lorenzo Burlon & Simone Emiliozzi & Alessandro Notarpietro & Massimiliano Pisani, 2015. "Medium-term forecasting of euro-area macroeconomic variables with DSGE and BVARX models," Questioni di Economia e Finanza (Occasional Papers) 257, Bank of Italy, Economic Research and International Relations Area.
    111. Luiz Renato Regis de Oliveira Lima & Wagner Piazza Gaglianone, 2012. "Constructing Optimal Density Forecasts from Point Forecast Combinations," Série Textos para Discussão (Working Papers) 5, Programa de Pós-Graduação em Economia - PPGE, Universidade Federal da Paraíba.
    112. Boriss Siliverstovs, 2013. "Do business tendency surveys help in forecasting employment?: A real-time evidence for Switzerland," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 129-151.
    113. Paul Ho & Thomas A. Lubik & Christian Matthes, 2023. "Averaging Impulse Responses Using Prediction Pools," Working Paper 23-04, Federal Reserve Bank of Richmond.
    114. Gergely Akos Ganics, 2017. "Optimal density forecast combinations," Working Papers 1751, Banco de España.
    115. Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
    116. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Post-Print hal-00834423, HAL.
    117. Yusupova, Alisa & Pavlidis, Nicos G. & Pavlidis, Efthymios G., 2023. "Dynamic linear models with adaptive discounting," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1925-1944.
    118. Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2019. "Does a financial accelerator improve forecasts during financial crises? Evidence from Japan with prediction-pooling methods," Journal of Asian Economics, Elsevier, vol. 60(C), pages 45-68.
    119. Kenneth Wallis, 2011. "Combining forecasts - forty years later," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 33-41.
    120. Christina Anderl & Guglielmo Maria Caporale, 2023. "Forecasting inflation with a zero lower bound or negative interest rates: Evidence from point and density forecasts," Manchester School, University of Manchester, vol. 91(3), pages 171-232, June.
    121. Fabian Krüger & Ingmar Nolte, 2011. "Disagreement, Uncertainty and the True Predictive Density," Working Paper Series of the Department of Economics, University of Konstanz 2011-43, Department of Economics, University of Konstanz.
    122. Victor Lopez-Perez, 2016. "Macroeconomic Forecast Uncertainty In The Euro Area," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(1), pages 9-41, March.
    123. Gadea Rivas, María Dolores & Gonzalo, Jesús, 2025. "Global and regional long-term climate forecasts: a heterogeneous future," UC3M Working papers. Economics 45946, Universidad Carlos III de Madrid. Departamento de Economía.
    124. Pauwels, Laurent L. & Vasnev, Andrey L., 2016. "A note on the estimation of optimal weights for density forecast combinations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 391-397.
    125. Pauwels, Laurent, 2019. "Predicting China’s Monetary Policy with Forecast Combinations," Working Papers BAWP-2019-07, University of Sydney Business School, Discipline of Business Analytics.
    126. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    127. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    128. Martina Hengge, 2019. "Uncertainty as a Predictor of Economic Activity," IHEID Working Papers 19-2019, Economics Section, The Graduate Institute of International Studies.
    129. Ruben Loaiza-Maya & Gael M Martin & David T. Frazier, 2020. "Focused Bayesian Prediction," Monash Econometrics and Business Statistics Working Papers 1/20, Monash University, Department of Econometrics and Business Statistics.
    130. Herman O. Stekler, 2008. "What Do We Know About G-7 Macro Forecasts?," Working Papers 2008-009, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    131. Francesco Ravazzolo & Marco J. Lombardi, 2012. "Oil price density forecasts: Exploring the linkages with stock markets," Working Papers No 3/2012, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    132. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    133. Nikolay Gospodinov & Esfandiar Maasoumi, 2017. "General Aggregation of Misspecified Asset Pricing Models," FRB Atlanta Working Paper 2017-10, Federal Reserve Bank of Atlanta.
    134. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    135. Geoff Kenny, 2010. "Macroeconomic forecasting: can forecast combination help?," Research Bulletin, European Central Bank, vol. 11, pages 9-12.
    136. Chad Shirley & William Swanson, 2025. "The Effects of Climate Change on GDP in the 21st Century: Working Paper 2025-02," Working Papers 61186, Congressional Budget Office.
    137. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    138. Kenny, Geoff & Morgan, Julian, 2011. "Some lessons from the financial crisis for the economic analysis," Occasional Paper Series 130, European Central Bank.
    139. Qian, Wei & Rolling, Craig A. & Cheng, Gang & Yang, Yuhong, 2022. "Combining forecasts for universally optimal performance," International Journal of Forecasting, Elsevier, vol. 38(1), pages 193-208.
    140. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2016. "A MIDAS approach to modeling first and second moment dynamics," Journal of Econometrics, Elsevier, vol. 193(2), pages 315-334.
    141. Paulo Mauricio S�nchez Beltr�n & Luis Fernando Melo Velandia, 2013. "Combinaci�n de brechas del producto colombiano," Borradores de Economia 10973, Banco de la Republica.
    142. van der Meer, Dennis & Pinson, Pierre & Camal, Simon & Kariniotakis, Georges, 2024. "CRPS-based online learning for nonlinear probabilistic forecast combination," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1449-1466.
    143. Reason Lesego Machete, 2011. "Early Warning with Calibrated and Sharper Probabilistic Forecasts," Papers 1112.6390, arXiv.org, revised Jan 2012.
    144. Laurent L. Pauwels & Andrey L. Vasnev, 2017. "Forecast combination for discrete choice models: predicting FOMC monetary policy decisions," Empirical Economics, Springer, vol. 52(1), pages 229-254, February.
    145. Tsionas, Mike G., 2021. "Optimal combinations of stochastic frontier and data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 294(2), pages 790-800.
    146. McAlinn, Kenichiro & West, Mike, 2019. "Dynamic Bayesian predictive synthesis in time series forecasting," Journal of Econometrics, Elsevier, vol. 210(1), pages 155-169.
    147. Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    148. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Online Appendix to "Financial conditions and density forecasts for US output and inflation"," Online Appendices 14-103, Review of Economic Dynamics.
    149. Krüger, Fabian & Nolte, Ingmar, 2016. "Disagreement versus uncertainty: Evidence from distribution forecasts," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 172-186.
    150. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
    151. Taylor, James W., 2020. "Forecast combinations for value at risk and expected shortfall," International Journal of Forecasting, Elsevier, vol. 36(2), pages 428-441.
    152. Martin Scheicher, 2010. "“Return-free risk”? Market pricing in credit risk markets," Research Bulletin, European Central Bank, vol. 11, pages 7-8.
    153. Pilar Poncela & Eva Senra, 2017. "Measuring uncertainty and assessing its predictive power in the euro area," Empirical Economics, Springer, vol. 53(1), pages 165-182, August.
    154. Baran, Sándor & Lerch, Sebastian, 2018. "Combining predictive distributions for the statistical post-processing of ensemble forecasts," International Journal of Forecasting, Elsevier, vol. 34(3), pages 477-496.
    155. Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251.
    156. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
    157. Bernaciak, Dawid & Griffin, Jim E., 2024. "A loss discounting framework for model averaging and selection in time series models," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1721-1733.
    158. Ciccarelli, Matteo & Darracq Pariès, Matthieu & Priftis, Romanos & Angelini, Elena & Bańbura, Marta & Bokan, Nikola & Fagan, Gabriel & Gumiel, José Emilio & Kornprobst, Antoine & Lalik, Magdalena & Mo, 2024. "ECB macroeconometric models for forecasting and policy analysis," Occasional Paper Series 344, European Central Bank.
    159. Kocięcki, Andrzej & Kolasa, Marcin & Rubaszek, Michał, 2012. "A Bayesian method of combining judgmental and model-based density forecasts," Economic Modelling, Elsevier, vol. 29(4), pages 1349-1355.
    160. Arroyo, Javier & Maté, Carlos, 2009. "Forecasting histogram time series with k-nearest neighbours methods," International Journal of Forecasting, Elsevier, vol. 25(1), pages 192-207.
    161. Gospodinov, Nikolay & Maasoumi, Esfandiar, 2021. "Generalized aggregation of misspecified models: With an application to asset pricing," Journal of Econometrics, Elsevier, vol. 222(1), pages 451-467.

  34. Mitchell, James, 2005. "The National Institute Density Forecasts of Inflation," National Institute Economic Review, National Institute of Economic and Social Research, vol. 193, pages 60-69, July.

    Cited by:

    1. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    2. Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
    3. Gian Luigi Mazzi & James Mitchell & Gaetana Montana, 2014. "Density Nowcasts and Model Combination: Nowcasting Euro-Area GDP Growth over the 2008–09 Recession," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 233-256, April.

  35. James Mitchell & Richard J. Smith & Martin R. Weale & Stephen Wright & Eduardo L. Salazar, 2005. "An Indicator of Monthly GDP and an Early Estimate of Quarterly GDP Growth," Economic Journal, Royal Economic Society, vol. 115(501), pages 108-129, February.

    Cited by:

    1. João Victor Issler & Hilton Hostalacio Notini & Claudia Fontoura Rodrigues, 2013. "Constructing coincident and leading indices of economic activity for the Brazilian economy," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2012(2), pages 43-65.
    2. Ewert Kleynhans & Clive Coetzee, 2021. "Regional Business Confidence as Early Indicator of Regional Economic Growth," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 19(1 (Spring), pages 27-48.
    3. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    4. Mönch, Emanuel & Uhlig, Harald, 2005. "Towards a monthly business cycle chronology for the euro area," SFB 649 Discussion Papers 2005-023, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Robert Lehmann, 2024. "A real-time regional accounts database for Germany with applications to GDP revisions and nowcasting," Empirical Economics, Springer, vol. 67(2), pages 817-838, August.
    6. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    7. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming”," AQR Working Papers 201706, University of Barcelona, Regional Quantitative Analysis Group, revised May 2017.
    8. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022. "Reconciled Estimates of Monthly GDP in the US," Working Papers 22-01, Federal Reserve Bank of Cleveland.
    9. Massimo Gerli & Giovanni Marini, 2006. "Spatial and Temporal Time Series Conversion: A Consistent Estimator of the Error Variance-Covariance Matrix," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(3), pages 373-405.
    10. Raluca Maran, 2023. "Impact of macroprudential policy on economic growth in Indonesia: a growth-at-risk approach," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(3), pages 575-613, December.
    11. Paolo Lucchino & Dr Richard Dorsett, 2013. "Young people's labour market transitions: the role of early experiences," National Institute of Economic and Social Research (NIESR) Discussion Papers 419, National Institute of Economic and Social Research.
    12. Konstantins Benkovskis, 2008. "Short-Term Forecasts of Latvia's Real Gross Domestic Product Growth Using Monthly Indicators," Working Papers 2008/05, Latvijas Banka.
    13. Adam Traczyk, 2013. "Financial integration and the term structure of interest rates," Empirical Economics, Springer, vol. 45(3), pages 1267-1305, December.
    14. Vladimir Boyko & Nadezhda Kislyak & Mikhail Nikitin & Oleg Oborin, 2020. "Methods for Estimating the Gross Regional Product Leading Indicator," Russian Journal of Money and Finance, Bank of Russia, vol. 79(3), pages 3-29, September.
    15. Thanaset Chevapatrakul & Tae-Hwan Kim & Paul Mizen, 2007. "Forecasting Changes in UK Interest Rates," Discussion Paper Series 2007_26, Department of Economics, Loughborough University, revised Nov 2007.
    16. Roberto S. Mariano & Yasutomo Murasawa, 2010. "A Coincident Index, Common Factors, and Monthly Real GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 27-46, February.
    17. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    18. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    19. Chevapatrakul, Thanaset & Kim, Tae-Hwan & Mizen, Paul, 2012. "Monetary information and monetary policy decisions: Evidence from the euroarea and the UK," Journal of Macroeconomics, Elsevier, vol. 34(2), pages 326-341.
    20. Guglielmo Maria Caporale & Anamaria Diana Sova & Robert Sova, 2025. "The COVID‐19 pandemic and European trade patterns: A sectoral analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 30(1), pages 729-749, January.
    21. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2018. "Regional Output Growth in the United Kingdom: More Timely and Higher Frequency Estimates, 1970-2017," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-14, Economic Statistics Centre of Excellence (ESCoE).
    22. Yasutomo Murasawa, 2016. "The Beveridge–Nelson decomposition of mixed-frequency series," Empirical Economics, Springer, vol. 51(4), pages 1415-1441, December.
    23. Churm, Rohan & Joyce, Michael & Kapetanios, George & Theodoridis, Konstantinos, 2021. "Unconventional monetary policies and the macroeconomy: The impact of the UK's QE2 and funding for lending scheme," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 721-736.
    24. Filippo Lechthaler & Lisa Leinert, 2019. "Moody oil: What is driving the crude oil price?," Empirical Economics, Springer, vol. 57(5), pages 1547-1578, November.
    25. Mitchell, J. & Solomou, S. & Weale, M., 2011. "Monthly GDP Estimates for Inter-War Britain," Cambridge Working Papers in Economics 1155, Faculty of Economics, University of Cambridge.
    26. Rohan Churm & Mike Joyce & George Kapetanios & Konstantinos Theodoridis, 2015. "Unconventional monetary policies and the macroeconomy: the impact of the United Kingdom's QE2 and Funding for Lending Scheme," Bank of England working papers 542, Bank of England.
    27. Falk Brauning & Siem Jan Koopman, 2012. "Forecasting Macroeconomic Variables using Collapsed Dynamic Factor Analysis," Tinbergen Institute Discussion Papers 12-042/4, Tinbergen Institute.
    28. Gkillas, Konstantinos & Manickavasagam, Jeevananthan & Visalakshmi, S., 2022. "Effects of fundamentals, geopolitical risk and expectations factors on crude oil prices," Resources Policy, Elsevier, vol. 78(C).
    29. Works, Richard Floyd, 2016. "Econometric modeling of exchange rate determinants by market classification: An empirical analysis of Japan and South Korea using the sticky-price monetary theory," MPRA Paper 76382, University Library of Munich, Germany.
    30. Marcellino, Massimiliano & Proietti, Tommaso & Frale, Cecilia & Mazzi, Gian Luigi, 2008. "A Monthly Indicator of the Euro Area GDP," CEPR Discussion Papers 7007, C.E.P.R. Discussion Papers.
    31. Saleem Bahaj, 2014. "Systemic Sovereign Risk: Macroeconomic Implications in the Euro Area," Discussion Papers 1406, Centre for Macroeconomics (CFM).
    32. Tuan Viet Le & William Baker, 2020. "The effects of trade deficit on output and employment: evidence from the U.S.’s economy," International Economics and Economic Policy, Springer, vol. 17(4), pages 877-895, October.
    33. Labonne, Paul, 2025. "Asymmetric uncertainty: Nowcasting using skewness in real-time data," International Journal of Forecasting, Elsevier, vol. 41(1), pages 229-250.
    34. Palenzuela, Diego Rodriguez & Saiz, Lorena & Stoevsky, Grigor & Tóth, Máté & Warmedinger, Thomas & Grigoraș, Veaceslav, 2024. "The euro area business cycle and its drivers," Occasional Paper Series 354, European Central Bank.
    35. George Kapetanios & Haroon Mumtaz & Ibrahim Stevens & Konstantinos Theodoridis, 2012. "Assessing the Economy‐wide Effects of Quantitative Easing," Economic Journal, Royal Economic Society, vol. 122(564), pages 316-347, November.
    36. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    37. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    38. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
    39. Murdipi, Rafiqa & Law, Siong Hook, 2016. "Dynamic Linkages between Price Indices and Inflation in Malaysia," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 50(1), pages 41-52.
    40. Ana Beatriz Galvão & Marta Lopresto, 2020. "Real-time Probabilistic Nowcasts of UK Quarterly GDP Growth using a Mixed-Frequency Bottom-up Approach," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-06, Economic Statistics Centre of Excellence (ESCoE).
    41. Daniel Roash & Tanya Suhoy, 2019. "Sentiment Indicators Based on a Short Business Tendency Survey," Bank of Israel Working Papers 2019.11, Bank of Israel.
    42. Henning Hesse & Boris Hofmann & James Weber, 2017. "The macroeconomic effects of asset purchases revisited," BIS Working Papers 680, Bank for International Settlements.
    43. Mazzi Gian Luigi & Mitchell James & Carausu Florabela, 2021. "Measuring and Communicating the Uncertainty in Official Economic Statistics," Journal of Official Statistics, Sciendo, vol. 37(2), pages 289-316, June.
    44. Naveen Srinivasan & Vidya Mahambare & M. Ramachandran, 2006. "UK monetary policy under inflation forecast targeting: is behaviour consistent with symmetric preferences?," Oxford Economic Papers, Oxford University Press, vol. 58(4), pages 706-721, October.
    45. Jennifer Castle & David Hendry & Oleg Kitov, 2013. "Forecasting and Nowcasting Macroeconomic Variables: A Methodological Overview," Economics Series Working Papers 674, University of Oxford, Department of Economics.
    46. Domenico Giannone & Lucrezia Reichlin & Saverio Simonelli, 2009. "Nowcasting Euro Area Economic Activity in Real-Time: The Role of Confidence Indicator," Working Papers ECARES 2009_021, ULB -- Universite Libre de Bruxelles.
    47. Luke Mosley & Idris Eckley & Alex Gibberd, 2021. "Sparse Temporal Disaggregation," Papers 2108.05783, arXiv.org, revised Oct 2022.
    48. Gian Luigi Mazzi & James Mitchell & Gaetana Montana, 2014. "Density Nowcasts and Model Combination: Nowcasting Euro-Area GDP Growth over the 2008–09 Recession," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 233-256, April.
    49. Paul Labonne & Martin Weale, 2020. "Temporal disaggregation of overlapping noisy quarterly data: estimation of monthly output from UK value‐added tax data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1211-1230, June.
    50. Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    51. Lin, Arthur J. & Chang, Hai Yen & Hsiao, Jung Lieh, 2019. "Does the Baltic Dry Index drive volatility spillovers in the commodities, currency, or stock markets?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 265-283.
    52. Francoise Charpin & Catherine Mathieu, 2004. "A new Leading Indicator of UK Quarterly GDP Growth," Documents de Travail de l'OFCE 2004-10, Observatoire Francais des Conjonctures Economiques (OFCE).
    53. Michael Zhemkov, 2022. "Assessment of Monthly GDP Growth Using Temporal Disaggregation Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 81(2), pages 79-104, June.
    54. Angelini, Elena & Rünstler, Gerhard & Bańbura, Marta, 2008. "Estimating and forecasting the euro area monthly national accounts from a dynamic factor model," Working Paper Series 953, European Central Bank.
    55. Tommaso Proietti & Alessandro Giovannelli, 2020. "Nowcasting Monthly GDP with Big Data: a Model Averaging Approach," CEIS Research Paper 482, Tor Vergata University, CEIS, revised 12 May 2020.
    56. Weale, Martin & Wieladek, Tomasz, 2016. "What are the macroeconomic effects of asset purchases?," Journal of Monetary Economics, Elsevier, vol. 79(C), pages 81-93.
    57. Weale, Martin & Wieladek, Tomasz, 2022. "Financial effects of QE and conventional monetary policy compared," Journal of International Money and Finance, Elsevier, vol. 127(C).
    58. Sorić, Petar & Lolić, Ivana & Claveria, Oscar & Monte, Enric & Torra, Salvador, 2019. "Unemployment expectations: A socio-demographic analysis of the effect of news," Labour Economics, Elsevier, vol. 60(C), pages 64-74.
    59. Luis Frank, 2019. "Desagregación temporal de series económicas con programación lineal," Ensayos de Política Económica, Departamento de Investigación Francisco Valsecchi, Facultad de Ciencias Económicas, Pontificia Universidad Católica Argentina., vol. 3(1), pages 59-82, Octubre.
    60. Proietti, Tommaso & Giovannelli, Alessandro & Ricchi, Ottavio & Citton, Ambra & Tegami, Christían & Tinti, Cristina, 2021. "Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1376-1398.
    61. Juergen Amann & Paul Middleditch, 2017. "Growth in a time of austerity: evidence from the UK," Scottish Journal of Political Economy, Scottish Economic Society, vol. 64(4), pages 349-375, September.
    62. Luke Mosley & Idris A. Eckley & Alex Gibberd, 2022. "Sparse temporal disaggregation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2203-2233, October.
    63. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
    64. Robert Gilhooly & Martin Weale & Tomasz Wieladek, 2012. "Disaggregating the international business cycle," Discussion Papers 37, Monetary Policy Committee Unit, Bank of England.
    65. Deeney, Peter & Cummins, Mark & Dowling, Michael & Bermingham, Adam, 2015. "Sentiment in oil markets," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 179-185.
    66. Kosei Fukuda, 2009. "Related-variables selection in temporal disaggregation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(4), pages 343-357.
    67. Amélie Charles & Chew Lian Chua & Olivier Darné & Sandy Suardi, 2021. "Oil price shocks, real economic activity and uncertainty," Bulletin of Economic Research, Wiley Blackwell, vol. 73(3), pages 364-392, July.
    68. Paul Labonne, 2022. "Asymmetric Uncertainty: Nowcasting Using Skewness in Real-time Data," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-23, Economic Statistics Centre of Excellence (ESCoE).
    69. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Trabelsi, Nader & Wohar, Mark, 2024. "Do shipping freight markets impact commodity markets?," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 986-1014.
    70. Cristea, R. G., 2020. "Can Alternative Data Improve the Accuracy of Dynamic Factor Model Nowcasts?," Cambridge Working Papers in Economics 20108, Faculty of Economics, University of Cambridge.
    71. Tae-Hwan Kima & Paul Mizena & Alan Thanaset, 2007. "Predicting Directional Changes in Interest Rates: Gains from Using Information from Monetary Indicators," Discussion Papers 07/07, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    72. Conefrey, Thomas & Walsh, Graeme, 2018. "A Monthly Indicator of Economic Activity for Ireland," Economic Letters 14/EL/18, Central Bank of Ireland.
    73. Bahaj, Saleem, 2020. "Sovereign spreads in the Euro area: Cross border transmission and macroeconomic implications," Journal of Monetary Economics, Elsevier, vol. 110(C), pages 116-135.
    74. Boero, Gianna & Smith, Jeremy & Wallis, Kenneth F., 2008. "Evaluating a three-dimensional panel of point forecasts: The Bank of England Survey of External Forecasters," International Journal of Forecasting, Elsevier, vol. 24(3), pages 354-367.
    75. Paul Labonne, 2020. "Asymmetric uncertainty : Nowcasting using skewness in real-time data," Papers 2012.02601, arXiv.org, revised May 2024.

  36. Michael Massmann & James Mitchell, 2005. "Reconsidering the Evidence: Are Euro Area Business Cycles Converging?," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2004(3), pages 275-307.

    Cited by:

    1. Klarl, Torben, 2020. "The response of CO2 emissions to the business cycle: New evidence for the U.S," Energy Economics, Elsevier, vol. 85(C).
    2. Hideaki HIRATA & Ayhan KOSE & Christopher OTROK, 2013. "Regionalization vs. Globalization," Discussion papers 13004, Research Institute of Economy, Trade and Industry (RIETI).
    3. Luc Dresse & Christophe Van Nieuwenhuyze, 2008. "Do survey indicators let us see the business cycle ? A frequency decomposition," Working Paper Research 131, National Bank of Belgium.
    4. António Caleiro, 2011. "Acerca da importância da sincronização do ciclo económico português no contexto europeu," Economics Working Papers 4_2011, University of Évora, Department of Economics (Portugal).
    5. Jakob De Haan & Robert Inklaar & Richard Jong‐A‐Pin, 2008. "Will Business Cycles In The Euro Area Converge? A Critical Survey Of Empirical Research," Journal of Economic Surveys, Wiley Blackwell, vol. 22(2), pages 234-273, April.
    6. Konstantakopoulou, Ioanna & Tsionas, Efthymios G., 2014. "Half a century of empirical evidence of business cycles in OECD countries," Journal of Policy Modeling, Elsevier, vol. 36(2), pages 389-409.
    7. Iulia Traistaru-Siedschlag, 2006. "Macroeconomic Differentials and Adjustment in the Euro Area," Papers WP175, Economic and Social Research Institute (ESRI).
    8. Esser, Andreas, 2014. "A Wavelet Approach to Synchronization of Output Cycles," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100545, Verein für Socialpolitik / German Economic Association.
    9. Erdenebat Bataa & Denise R. Osborn & Marianne Sensier & Dick van Dijk, 2009. "Changes in International Business Cycle Affiliations," Centre for Growth and Business Cycle Research Discussion Paper Series 132, Economics, The University of Manchester.
    10. Holtemöller, Oliver (Ed.) & Rahn, Jörg (Ed.) & Stierle, Michael H. (Ed.), 2009. "Characteristics of Business Cycles: Have they Changed?," IWH-Sonderhefte 5/2009, Halle Institute for Economic Research (IWH).
    11. Marco Rubilar-González & Gabriel Pino, 2018. "Are Euro-Area expectations about recession phases effective to anticipate consequences of economic crises?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 9(2), pages 141-161, June.
    12. Klaus Weyerstrass & Bas Aarle & Marcus Kappler & Atilim Seymen, 2011. "Business Cycle Synchronisation with(in) the Euro Area: in Search of a ‘Euro Effect’," Open Economies Review, Springer, vol. 22(3), pages 427-446, July.
    13. Arčabić, Vladimir & Škrinjarić, Tihana, 2021. "Sharing is caring: Spillovers and synchronization of business cycles in the European Union," Economic Modelling, Elsevier, vol. 96(C), pages 25-39.
    14. Gandjon Fankem, Gislain Stéphane & Fouda Mbesa, Lucien Cédric, 2023. "Business cycle synchronization and African monetary union: A wavelet analysis," Journal of Macroeconomics, Elsevier, vol. 77(C).
    15. Fernandez, Viviana, 2006. "Does domestic cooperation lead to business-cycle convergence and financial linkages?," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(3), pages 369-396, July.
    16. Arčabić, Vladimir & Panovska, Irina & Tica, Josip, 2024. "Business cycle synchronization and asymmetry in the European Union," Economic Modelling, Elsevier, vol. 139(C).
    17. Nenad Stanisic, 2013. "Convergence between the business cycles of Central and Eastern European countries and the Euro area," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 13(1), pages 63-74, July.
    18. Ioanna Konstantakopoulou & Eftymios Tsionas & Tryphon Kollintzas, 2009. "Stylized Facts of Prices and Interest Rates over the Business Cycle," Economics Bulletin, AccessEcon, vol. 29(4), pages 2613-2627.
    19. Barrett, Alan & Bergin, Adele & FitzGerald, John & Traistaru-Siedschlag, Iulia, 2006. "Economic Assessment of the Euro Area: Forecasts and Policy Analysis, Autumn Report 2006," Research Series, Economic and Social Research Institute (ESRI), number sustat22.

  37. James Mitchell & Richard J. Smith & Martin R. Weale, 2005. "Forecasting Manufacturing Output Growth Using Firm‐Level Survey Data," Manchester School, University of Manchester, vol. 73(4), pages 479-499, July.

    Cited by:

    1. James Mitchell & Richard J. Smith & Martin R. Weale, 2013. "Efficient Aggregation Of Panel Qualitative Survey Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 580-603, June.
    2. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    3. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming”," AQR Working Papers 201706, University of Barcelona, Regional Quantitative Analysis Group, revised May 2017.
    4. Ciaran Driver, 2019. "Trade liberalization and South African manufacturing: Looking back with data," WIDER Working Paper Series wp-2019-30, World Institute for Development Economic Research (UNU-WIDER).
    5. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents' expectations. Different patterns of anticipation of the 2008 financial crisis”," IREA Working Papers 201511, University of Barcelona, Research Institute of Applied Economics, revised Mar 2015.
    6. David Bywaters & Gareth Thomas, 2008. "Output Expectations and Forecasting of UK Manufacturing," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 36(2), pages 125-137, June.
    7. Maurizio Bovi, 2006. "Consumers Sentiment and Cognitive Macroeconometrics Paradoxes and Explanations," ISAE Working Papers 66, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    8. François Hild, 2006. "Un nouvel indicateur synthétique prenant en compte la dynamique des réponses individuelles à l'enquête Industrie," Économie et Statistique, Programme National Persée, vol. 395(1), pages 65-89.
    9. Kajal Lahiri & Yongchen Zhao, 2013. "Quantifying Heterogeneous Survey Expectations: The Carlson-Parkin Method Revisited," Discussion Papers 13-08, University at Albany, SUNY, Department of Economics.
    10. Driver, Ciaran & Muñoz-Bugarin, Jair, 2019. "Financial constraints on investment: Effects of firm size and the financial crisis," Research in International Business and Finance, Elsevier, vol. 47(C), pages 441-457.
    11. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    12. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    13. Breitung, Jörg & Schmeling, Maik, 2011. "Quantifying survey expectations: What's wrong with the probability approach?," Hannover Economic Papers (HEP) dp-485, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    14. Dr Silvia Lui & Dr Martin Weale & Dr. James Mitchell, 2009. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," National Institute of Economic and Social Research (NIESR) Discussion Papers 343, National Institute of Economic and Social Research.
    15. Lahiri, Kajal & Zhao, Yongchen, 2015. "Quantifying survey expectations: A critical review and generalization of the Carlson–Parkin method," International Journal of Forecasting, Elsevier, vol. 31(1), pages 51-62.
    16. Troy D. Matheson & James Mitchell & Brian Silverstone, 2010. "Nowcasting and predicting data revisions using panel survey data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 313-330.
    17. Sorić, Petar & Lolić, Ivana & Claveria, Oscar & Monte, Enric & Torra, Salvador, 2019. "Unemployment expectations: A socio-demographic analysis of the effect of news," Labour Economics, Elsevier, vol. 60(C), pages 64-74.
    18. Troy Matheson & James Mitchell & Brian Silverstone, 2007. "Nowcasting and predicting data revisions in real time using qualitative panel survey data," Reserve Bank of New Zealand Discussion Paper Series DP2007/02, Reserve Bank of New Zealand.
    19. Guizzardi, Andrea & Stacchini, Annalisa, 2015. "Real-time forecasting regional tourism with business sentiment surveys," Tourism Management, Elsevier, vol. 47(C), pages 213-223.
    20. Olivier Biau & Hélène Erkel-Rousse & Nicolas Ferrari, 2006. "Réponses individuelles aux enquêtes de conjoncture et prévision de la production manufacturière," Économie et Statistique, Programme National Persée, vol. 395(1), pages 91-116.

  38. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR ‘Fan’ Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.

    Cited by:

    1. Buncic, Daniel, 2009. "Understanding forecast failure in ESTAR models of real exchange rates," MPRA Paper 13121, University Library of Munich, Germany.
    2. Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
    3. Francesco Ravazzolo & Shaun P. Vahey, 2010. "Forecast densities for economic aggregates from disaggregate ensembles," Working Paper 2010/02, Norges Bank.
    4. Tony Chernis & Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2023. "Predictive Density Combination Using a Tree-Based Synthesis Function," Working Papers 23-30, Federal Reserve Bank of Cleveland.
    5. Carlos Diaz Vela, 2016. "Extracting the Information Shocks from the Bank of England Inflation Density Forecasts," Discussion Papers in Economics 16/13, Division of Economics, School of Business, University of Leicester.
    6. Matei Demetrescu & Mu-Chun Wang, 2014. "Incorporating Asymmetric Preferences into Fan Charts and Path Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 287-297, April.
    7. Knüppel, Malte & Schultefrankenfeld, Guido, 2011. "How informative are central bank assessments of macroeconomic risks?," Discussion Paper Series 1: Economic Studies 2011,13, Deutsche Bundesbank.
    8. Knüppel, Malte & Schultefrankenfeld, Guido, 2018. "Assessing the uncertainty in central banks' inflation outlooks," Discussion Papers 56/2018, Deutsche Bundesbank.
    9. Allayioti, Anastasia & Venditti, Fabrizio, 2024. "The role of comovement and time-varying dynamics in forecasting commodity prices," Working Paper Series 2901, European Central Bank.
    10. Mehmet Balcilar & Nico Katzke & Rangan Gupta, 2015. "Do Precious Metal Prices Help in Forecasting South African Inflation?," Working Papers 03/2015, Stellenbosch University, Department of Economics.
    11. Lennart Hoogerheide & Richard Kleijn & Francesco Ravazzolo & Herman K. Van Dijk & Marno Verbeek, 2010. "Forecast accuracy and economic gains from Bayesian model averaging using time-varying weights," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 251-269.
    12. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Bayesian Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-003/4, Tinbergen Institute.
    13. Ardia, David & Lennart, Hoogerheide & Nienke, Corré, 2011. "Stock index returns’ density prediction using GARCH models: Frequentist or Bayesian estimation?," MPRA Paper 28259, University Library of Munich, Germany.
    14. Götz, T.B. & Hecq, A.W. & Urbain, J.R.Y.J., 2014. "Combining distributions of real-time forecasts: An application to U.S. growth," Research Memorandum 027, Maastricht University, Graduate School of Business and Economics (GSBE).
    15. Pedro Serrano & Antoni Vaello‐Sebastià & M. Magdalena Vich Llompart, 2024. "International evidence of the forecasting ability of option‐implied distributions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1447-1464, August.
    16. Kolasa, Marcin & Rubaszek, Michał, 2014. "Forecasting with DSGE models with financial frictions," Dynare Working Papers 40, CEPREMAP.
    17. Cees Diks & Valentyn Panchenko & Oleg Sokolinskiy, & Dick van Dijk, 2013. "Comparing the Accuracy of Copula-Based Multivariate Density Forecasts in Selected Regions of Support," Tinbergen Institute Discussion Papers 13-061/III, Tinbergen Institute.
    18. Anne Sofie Jore & James Mitchell & Shaun Vahey, 2008. "Combining Forecast Densities from VARs with Uncertain Instabilities," Reserve Bank of New Zealand Discussion Paper Series DP2008/18, Reserve Bank of New Zealand.
    19. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2010. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Post-Print hal-00732675, HAL.
    20. Tony Chernis & Gary Koop & Emily Tallman & Mike West, 2024. "Decision synthesis in monetary policy," Papers 2406.03321, arXiv.org, revised Feb 2025.
    21. Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2015. "EuroMInd-D: A Density Estimate of Monthly Gross Domestic Product for the Euro Area," CREATES Research Papers 2015-12, Department of Economics and Business Economics, Aarhus University.
    22. Anne Opschoor & André Lucas & István Barra & Dick van Dijk, 2021. "Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1066-1079, October.
    23. Andrew Martinez, 2017. "Testing for Differences in Path Forecast Accuracy: Forecast-Error Dynamics Matter," Working Papers (Old Series) 1717, Federal Reserve Bank of Cleveland.
    24. Jonas Dovern & Alexander Glas & Geoff Kenny, 2024. "Testing for differences in survey‐based density expectations: A compositional data approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(6), pages 1104-1122, September.
    25. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    26. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2011. "Nowcasting GDP in Real-Time: A Density Combination Approach," Working Papers No 1/2011, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    27. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    28. Andrea Monticini & Francesco Ravazzolo, 2014. "Forecasting the intraday market price of money," DISCE - Working Papers del Dipartimento di Economia e Finanza def010, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    29. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    30. Pär Österholm, 2006. "Incorporating judgement in fan charts," Finance and Economics Discussion Series 2006-39, Board of Governors of the Federal Reserve System (U.S.).
    31. Tony Chernis & Taylor Webley, 2022. "Nowcasting Canadian GDP with Density Combinations," Discussion Papers 2022-12, Bank of Canada.
    32. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an uncertain economic environment," Working Paper 2014/17, Norges Bank.
    33. Thomas Lux & Jaba Ghonghadze, 2011. "Modeling the Dynamics of EU Economic Sentiment Indicators: An Interaction-Based Approach," Post-Print hal-00711445, HAL.
    34. Garratt, Anthony & Mise, Emi, 2014. "Forecasting exchange rates using panel model and model averaging," Economic Modelling, Elsevier, vol. 37(C), pages 32-40.
    35. Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
    36. Knüppel, Malte, 2011. "Evaluating the calibration of multi-step-ahead density forecasts using raw moments," Discussion Paper Series 1: Economic Studies 2011,32, Deutsche Bundesbank.
    37. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
    38. Anthony Garratt & James Mitchell & Shaun P. Vahey, 2009. "Measuring Output Gap Uncertainty," Birkbeck Working Papers in Economics and Finance 0909, Birkbeck, Department of Economics, Mathematics & Statistics.
    39. Michal Franta & David Havrlant & Marek Rusnak, 2014. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Working Papers 2014/08, Czech National Bank, Research and Statistics Department.
    40. Francesco Ravazzolo & Shaun P Vahey, 2010. "Measuring Core Inflation in Australia with Disaggregate Ensembles," RBA Annual Conference Volume (Discontinued), in: Renée Fry & Callum Jones & Christopher Kent (ed.),Inflation in an Era of Relative Price Shocks, Reserve Bank of Australia.
    41. Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," GRIPS Discussion Papers 23-07, National Graduate Institute for Policy Studies.
    42. Francesco Ravazzolo & Philip Rothman, 2015. "Oil-Price Density Forecasts of U.S. GDP," Working Papers No 10/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    43. Dijk, D. van & Diks, C.G.H. & Panchenko, V., 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," CeNDEF Working Papers 08-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    44. Smith, Michael Stanley & Shively, Thomas S., 2018. "Econometric modeling of regional electricity spot prices in the Australian market," Energy Economics, Elsevier, vol. 74(C), pages 886-903.
    45. Michael Clements, 2016. "Are Macroeconomic Density Forecasts Informative?," ICMA Centre Discussion Papers in Finance icma-dp2016-02, Henley Business School, University of Reading.
    46. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle in forward looking data," Review of Derivatives Research, Springer, vol. 21(3), pages 253-276, October.
    47. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    48. Jie Cheng, 2024. "Evaluating Density Forecasts Using Weighted Multivariate Scores in a Risk Management Context," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3617-3643, December.
    49. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    50. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    51. Wolden Bache, Ida & Sofie Jore, Anne & Mitchell, James & Vahey, Shaun P., 2011. "Combining VAR and DSGE forecast densities," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1659-1670, October.
    52. Sheng, Xin & Gupta, Rangan & Salisu, Afees A. & Bouri, Elie, 2022. "OPEC News and Exchange Rate Forecasting Using Dynamic Bayesian Learning," Finance Research Letters, Elsevier, vol. 45(C).
    53. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    54. Zdeněk Zmeškal & Dana Dluhošová & Karolina Lisztwanová & Antonín Pončík & Iveta Ratmanová, 2023. "Distribution Prediction of Decomposed Relative EVA Measure with Levy-Driven Mean-Reversion Processes: The Case of an Automotive Sector of a Small Open Economy," Forecasting, MDPI, vol. 5(2), pages 1-19, May.
    55. David Bolder & Yuliya Romanyuk, 2008. "Combining Canadian Interest-Rate Forecasts," Staff Working Papers 08-34, Bank of Canada.
    56. Labonne, Paul, 2025. "Asymmetric uncertainty: Nowcasting using skewness in real-time data," International Journal of Forecasting, Elsevier, vol. 41(1), pages 229-250.
    57. Lux, Thomas, 2012. "Estimation of an agent-based model of investor sentiment formation in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1284-1302.
    58. Marc-Oliver Pohle, 2020. "The Murphy Decomposition and the Calibration-Resolution Principle: A New Perspective on Forecast Evaluation," Papers 2005.01835, arXiv.org.
    59. Roberto Casarin & Giulia Mantoan & Francesco Ravazzolo, 2016. "Bayesian Calibration of Generalized Pools of Predictive Distributions," Econometrics, MDPI, vol. 4(1), pages 1-24, March.
    60. Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
    61. Paulo M. Sánchez & Luis Fernando Melo, 2013. "Combinación de brechas del producto colombiano," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 31(72), pages 74-82.
    62. Marco Jacopo Lombardi, 2013. "On the correlation between commodity and equity returns: implications for portfolio allocation," BIS Working Papers 420, Bank for International Settlements.
    63. Andre Lucas & Anne Opschoor & Luca Rossini, 2021. "Tail Heterogeneity for Dynamic Covariance Matrices: the F-Riesz Distribution," Tinbergen Institute Discussion Papers 21-010/III, Tinbergen Institute, revised 11 Jul 2023.
    64. Salisu, Afees A. & Tchankam, Jean Paul, 2022. "US Stock return predictability with high dimensional models," Finance Research Letters, Elsevier, vol. 45(C).
    65. Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
    66. Opschoor, Anne & Lucas, André, 2023. "Time-varying variance and skewness in realized volatility measures," International Journal of Forecasting, Elsevier, vol. 39(2), pages 827-840.
    67. Fabio Busetti & Michele Caivano & Lisa Rodano, 2015. "On the conditional distribution of euro area inflation forecast," Temi di discussione (Economic working papers) 1027, Bank of Italy, Economic Research and International Relations Area.
    68. Brentnall, Adam R. & Crowder, Martin J. & Hand, David J., 2010. "Predictive-sequential forecasting system development for cash machine stocking," International Journal of Forecasting, Elsevier, vol. 26(4), pages 764-776, October.
    69. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    70. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2023. "A flexible predictive density combination for large financial data sets in regular and crisis periods," Journal of Econometrics, Elsevier, vol. 237(2).
    71. Manzan, Sebastiano & Zerom, Dawit, 2009. "Are Macroeconomic Variables Useful for Forecasting the Distribution of U.S. Inflation?," MPRA Paper 14387, University Library of Munich, Germany.
    72. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
    73. Christian Kascha & Francesco Ravazzolo, 2008. "Combining inflation density forecasts," Working Paper 2008/22, Norges Bank.
    74. Anthony Garratt & Ivan Petrella, 2022. "Commodity prices and inflation risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 392-414, March.
    75. Xiao-Ming Li & Qing Xu, 2007. "Evaluating density forecasts of the model with a conditional skewed-t distribution for China's stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 18(3), pages 213-227.
    76. Timo Henckel & Shaun Vahey & Liz Wakerly, 2011. "Probabilistic interest rate setting with a shadow board: A description of the pilot project," CAMA Working Papers 2011-27, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    77. Ricardo Crisóstomo & Lorena Couso, 2018. "Financial density forecasts: A comprehensive comparison of risk‐neutral and historical schemes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(5), pages 589-603, August.
    78. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    79. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
    80. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
    81. Ida Wolden Bache & James Mitchell & Francesco Ravazzolo & Shaun P. Vahey, 2009. "Macro modelling with many models," Working Paper 2009/15, Norges Bank.
    82. Huurman, Christian & Ravazzolo, Francesco & Zhou, Chen, 2012. "The power of weather," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3793-3807.
    83. McAdam, Peter & Warne, Anders, 2020. "Density forecast combinations: the real-time dimension," Working Paper Series 2378, European Central Bank.
    84. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    85. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2020. "Forecasting commodity prices out-of-sample: Can technical indicators help?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 666-683.
    86. Gian Luigi Mazzi & James Mitchell & Gaetana Montana, 2014. "Density Nowcasts and Model Combination: Nowcasting Euro-Area GDP Growth over the 2008–09 Recession," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 233-256, April.
    87. Ana Beatriz Galvão & James Mitchell, 2019. "Measuring Data Uncertainty: An Application using the Bank of England's "Fan Charts" for Historical GDP Growth," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-08, Economic Statistics Centre of Excellence (ESCoE).
    88. M. Mogliani & Thomas Ferrière, 2016. "Rationality of announcements, business cycle asymmetry, and predictability of revisions. The case of French GDP," Working papers 600, Banque de France.
    89. Boriss Siliverstovs, 2013. "Do business tendency surveys help in forecasting employment?: A real-time evidence for Switzerland," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 129-151.
    90. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    91. Mouratidis, Kostas, 2008. "Evaluating currency crises: A Bayesian Markov switching approach," Journal of Macroeconomics, Elsevier, vol. 30(4), pages 1688-1711, December.
    92. Andres Trujillo-Barrera & Philip Garcia & Mindy L Mallory, 2018. "Short-term price density forecasts in the lean hog futures market," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 121-142.
    93. Michal Franta & Jozef Baruník & Roman Horváth & Katerina Smídková, 2014. "Are Bayesian Fan Charts Useful? The Effect of Zero Lower Bound and Evaluation of Financial Stability Stress Tests," International Journal of Central Banking, International Journal of Central Banking, vol. 10(1), pages 159-188, March.
    94. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Post-Print hal-00834423, HAL.
    95. Shaun P Vahey & Elizabeth C Wakerly, 2013. "Moving towards probability forecasting," BIS Papers chapters, in: Bank for International Settlements (ed.), Globalisation and inflation dynamics in Asia and the Pacific, volume 70, pages 3-8, Bank for International Settlements.
    96. Guidolin, Massimo & Ravazzolo, Francesco & Tortora, Andrea Donato, 2013. "Alternative econometric implementations of multi-factor models of the U.S. financial markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(2), pages 87-111.
    97. Diks, Cees & Panchenko, Valentyn & Sokolinskiy, Oleg & van Dijk, Dick, 2014. "Comparing the accuracy of multivariate density forecasts in selected regions of the copula support," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 79-94.
    98. Gelain, Paolo & Iskrev, Nikolay & J. Lansing, Kevin & Mendicino, Caterina, 2019. "Inflation dynamics and adaptive expectations in an estimated DSGE model," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 258-277.
    99. Kenneth Wallis, 2011. "Combining forecasts - forty years later," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 33-41.
    100. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
    101. Victor Lopez-Perez, 2016. "Macroeconomic Forecast Uncertainty In The Euro Area," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(1), pages 9-41, March.
    102. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    103. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    104. Tae-Hwy Lee & Yong Bao & Burak Saltoğlu, 2007. "Comparing density forecast models Previous versions of this paper have been circulated with the title, 'A Test for Density Forecast Comparison with Applications to Risk Management' since October 2003;," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 203-225.
    105. Roberto Casarin & Stefano Grassi & Francesco Ravazzollo & Herman K. van Dijk, 2019. "Forecast Density Combinations with Dynamic Learning for Large Data Sets in Economics and Finance," Tinbergen Institute Discussion Papers 19-025/III, Tinbergen Institute.
    106. Herman O. Stekler, 2008. "What Do We Know About G-7 Macro Forecasts?," Working Papers 2008-009, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    107. Ilmari Juutilainen & Juha Roning, 2010. "How to compare interpretatively different models for the conditional variance function," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 983-997.
    108. Lukasz Gatarek & Lennart Hoogerheide & Koen Hooning & Herman K. van Dijk, 2013. "Censored Posterior and Predictive Likelihood in Left-Tail Prediction for Accurate Value at Risk Estimation," Tinbergen Institute Discussion Papers 13-060/III, Tinbergen Institute, revised 06 Mar 2014.
    109. Francesco Ravazzolo & Marco J. Lombardi, 2012. "Oil price density forecasts: Exploring the linkages with stock markets," Working Papers No 3/2012, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    110. Tsuchiya, Yoichi, 2022. "Evaluating the European Central Bank’s uncertainty forecasts," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 321-330.
    111. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    112. Enzo D'Innocenzo & André Lucas & Anne Opschoor & Xingmin Zhang, 2024. "Heterogeneity and dynamics in network models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 150-173, January.
    113. Anne Opschoor & André Lucas, 2019. "Time-varying tail behavior for realized kernels," Tinbergen Institute Discussion Papers 19-051/IV, Tinbergen Institute.
    114. Paulo Mauricio S�nchez Beltr�n & Luis Fernando Melo Velandia, 2013. "Combinaci�n de brechas del producto colombiano," Borradores de Economia 10973, Banco de la Republica.
    115. Hoogerheide, Lennart F. & Ardia, David & Corré, Nienke, 2012. "Density prediction of stock index returns using GARCH models: Frequentist or Bayesian estimation?," Economics Letters, Elsevier, vol. 116(3), pages 322-325.
    116. Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
    117. Paul Labonne, 2022. "Asymmetric Uncertainty: Nowcasting Using Skewness in Real-time Data," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-23, Economic Statistics Centre of Excellence (ESCoE).
    118. Jie Cheng, 2023. "Modelling and forecasting risk dependence and portfolio VaR for cryptocurrencies," Empirical Economics, Springer, vol. 65(2), pages 899-924, August.
    119. Garratt, Anthony & Mitchell, James & Vahey, Shaun P., 2014. "Measuring output gap nowcast uncertainty," International Journal of Forecasting, Elsevier, vol. 30(2), pages 268-279.
    120. Diks, Cees & Fang, Hao, 2020. "Comparing density forecasts in a risk management context," International Journal of Forecasting, Elsevier, vol. 36(2), pages 531-551.
    121. Meade, Nigel, 2010. "Oil prices -- Brownian motion or mean reversion? A study using a one year ahead density forecast criterion," Energy Economics, Elsevier, vol. 32(6), pages 1485-1498, November.
    122. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
    123. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Combining Predictive Densities using Nonlinear Filtering with Applications to US Economics Data," Tinbergen Institute Discussion Papers 11-172/4, Tinbergen Institute.
    124. Coroneo, Laura & Iacone, Fabrizio & Profumo, Fabio, 2024. "Survey density forecast comparison in small samples," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1486-1504.
    125. Kocięcki, Andrzej & Kolasa, Marcin & Rubaszek, Michał, 2012. "A Bayesian method of combining judgmental and model-based density forecasts," Economic Modelling, Elsevier, vol. 29(4), pages 1349-1355.
    126. Cobb, Marcus P A, 2017. "Aggregate Density Forecasting from Disaggregate Components Using Large VARs," MPRA Paper 76849, University Library of Munich, Germany.
    127. Li Liu & Zhiyuan Pan & Yudong Wang, 2021. "What can we learn from the return predictability over the business cycle?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 108-131, January.

  39. Massmann, Michael & Mitchell, James & Weale, Martin, 2003. "Business Cycles and Turning Points: A Survey of Statistical Techniques," National Institute Economic Review, National Institute of Economic and Social Research, vol. 183, pages 90-106, January.

    Cited by:

    1. Hahn, Elke & Zekaite, Zivile & de Bondt, Gabe, 2018. "ALICE: A new inflation monitoring tool," Working Paper Series 2175, European Central Bank.
    2. Francis W. Ahking, 2013. "Measuring U.S. Business Cycles: A Comparison of Two Methods and Two Indicators of Economic Activities," Working papers 2013-10, University of Connecticut, Department of Economics.
    3. James Mitchell & Michael Massmann, 2004. "Reconsidering the evidence: are Eurozone business cycles converging?," Money Macro and Finance (MMF) Research Group Conference 2003 67, Money Macro and Finance Research Group.
    4. Klaus Wohlrabe, 2011. "Konstruktion von Indikatoren zur Analyse der wirtschaftlichen Aktivität in den Dienstleistungsbereichen," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 55, September.
    5. Francis W. Ahking, 2015. "Measuring U.S. Business Cycles: A Comparison of Two Methods and Two Indicators of Economic Activities (With Appendix A)," Working papers 2015-06, University of Connecticut, Department of Economics.
    6. Marco Rubilar-González & Gabriel Pino, 2018. "Are Euro-Area expectations about recession phases effective to anticipate consequences of economic crises?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 9(2), pages 141-161, June.
    7. Timo Terasvirta & Andr�s Gonz�lez, 2006. "Modelling autoregressive processes with a shifting mean," Borradores de Economia 3230, Banco de la Republica.
    8. Mark J. Holmes & Brian Silverstone, 2010. "Business confidence and cyclical turning points: a Markov-switching approach," Applied Economics Letters, Taylor & Francis Journals, vol. 17(3), pages 229-233, February.
    9. Sèna Kimm Gnangnon, 2012. "An analysis of duration dependence of government revenue expansions and contractions in Developing Countries," Working Papers halshs-00722083, HAL.
    10. Lourdes Montoya & Jakob Haan, 2008. "Regional business cycle synchronization in Europe?," International Economics and Economic Policy, Springer, vol. 5(1), pages 123-137, July.
    11. Beate Schirwitz & Christian Seiler & Klaus Wohlrabe, 2009. "Regionale Konjunkturzyklen in Deutschland – Teil II: Die Zyklendatierung," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(14), pages 24-31, July.
    12. Maurizio Bovi, 2003. "Nonparametric Analysis Of The International Business Cycles," ISAE Working Papers 37, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    13. Kovačić, Zlatko & Vilotić, Miloš, 2017. "Assessing European business cycles synchronization," MPRA Paper 79990, University Library of Munich, Germany.

  40. Mitchell, James, 2002. "The use of non-normal distributions in quantifying qualitative survey data on expectations," Economics Letters, Elsevier, vol. 76(1), pages 101-107, June.

    Cited by:

    1. Sarah M. Lein & Thomas Maag, 2011. "The Formation Of Inflation Perceptions: Some Empirical Facts For European Countries," Scottish Journal of Political Economy, Scottish Economic Society, vol. 58(2), pages 155-188, May.
    2. James Mitchell & Richard J. Smith & Martin R. Weale, 2013. "Efficient Aggregation Of Panel Qualitative Survey Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 580-603, June.
    3. Tatiana Cesaroni, 2007. "Inspecting the cyclical properties of the Italian Manufacturing Business survey data," ISAE Working Papers 83, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    4. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    5. Ray Barrell, 1999. "Employment Security and European Labour Demand: A Panel Study Across 16 Industries," National Institute of Economic and Social Research (NIESR) Discussion Papers 148, National Institute of Economic and Social Research.
    6. Dr Martin Weale & Dr. James Mitchell, 2005. "Forecasting manufacturing output growth using firm-level survey data," National Institute of Economic and Social Research (NIESR) Discussion Papers 251, National Institute of Economic and Social Research.
    7. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents' expectations. Different patterns of anticipation of the 2008 financial crisis”," IREA Working Papers 201511, University of Barcelona, Research Institute of Applied Economics, revised Mar 2015.
    8. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.
    9. Kajal Lahiri & Yongchen Zhao, 2013. "Quantifying Heterogeneous Survey Expectations: The Carlson-Parkin Method Revisited," Discussion Papers 13-08, University at Albany, SUNY, Department of Economics.
    10. Ullrich, Katrin, 2007. "Inflation Expectations of Experts and ECB Communication," ZEW Discussion Papers 07-054, ZEW - Leibniz Centre for European Economic Research.
    11. Ece Oral, 2013. "Consumer Inflation Expectations in Turkey," IFC Working Papers 10, Bank for International Settlements.
    12. Kjellberg, David, 2006. "Measuring Expectations," Working Paper Series 2006:9, Uppsala University, Department of Economics.
    13. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    14. Breitung, Jörg & Schmeling, Maik, 2011. "Quantifying survey expectations: What's wrong with the probability approach?," Hannover Economic Papers (HEP) dp-485, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    15. Oscar Claveria, 2021. "Forecasting with Business and Consumer Survey Data," Forecasting, MDPI, vol. 3(1), pages 1-22, February.
    16. Lahiri, Kajal & Zhao, Yongchen, 2015. "Quantifying survey expectations: A critical review and generalization of the Carlson–Parkin method," International Journal of Forecasting, Elsevier, vol. 31(1), pages 51-62.
    17. Tomasz Łyziak, 2013. "Non-Positive Scaling Factor in Probability Quantification Methods: Deriving Consumer Inflation Perceptions and Expectations in the Whole Euro Area and Ireland," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 55(1), pages 77-98, March.
    18. Heinemann, Friedrich & Ullrich, Katrin, 2004. "The Impact of EMU on Inflation Expectations," ZEW Discussion Papers 04-01, ZEW - Leibniz Centre for European Economic Research.
    19. Ece Oral, 2016. "Measuring Consumer Inflation Expectations in Turkey," Eastern European Business and Economics Journal, Eastern European Business and Economics Studies Centre, vol. 2(1), pages 43-74.
    20. O Claveria & E Pons & J Surinach, 2006. "Quantification of Expectations. Are They Useful for Forecasting Inflation?," Economic Issues Journal Articles, Economic Issues, vol. 11(2), pages 19-38, September.

  41. Massmann, Michael & Mitchell, James, 2002. "Have UK and Eurozone Business Cycles Become More Correlated?," National Institute Economic Review, National Institute of Economic and Social Research, vol. 182, pages 58-71, October.

    Cited by:

    1. Gabriel Moser & Wolfgang Pointner & Gerhard Reitschuler, 2004. "Economic Growth in Denmark, Sweden and the United Kingdom since the Start of Monetary Union," Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 53-66.
    2. Fiona Atkins, 2005. "Financial Crises and Money Demand in Jamaica," Birkbeck Working Papers in Economics and Finance 0512, Birkbeck, Department of Economics, Mathematics & Statistics.
    3. James Mitchell & Michael Massmann, 2004. "Reconsidering the evidence: are Eurozone business cycles converging?," Money Macro and Finance (MMF) Research Group Conference 2003 67, Money Macro and Finance Research Group.
    4. Willie Lahari, 2011. "Assessing Business Cycle Synchronisation - Prospects for a Pacific Islands Currency Union," Working Papers 1110, University of Otago, Department of Economics, revised Oct 2011.
    5. Donald Robertson & Anthony Garratt & Stephen Wright, 2006. "Permanent vs transitory components and economic fundamentals," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 521-542.
    6. Narayan, Paresh Kumar, 2008. "Understanding the importance of permanent and transitory shocks at business cycle horizons for the UK," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2879-2888.
    7. Holtemöller, Oliver (Ed.) & Rahn, Jörg (Ed.) & Stierle, Michael H. (Ed.), 2009. "Characteristics of Business Cycles: Have they Changed?," IWH-Sonderhefte 5/2009, Halle Institute for Economic Research (IWH).
    8. Paulo M.M. Rodrigues & Raul Filipe C. Guerreiro, 2011. "A comparison of the cyclical evolution of various geographic areas of reference with Portugal," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    9. Anthony Garratt & Donald Robertson & Stephen Wright, 2004. "Inside the black box: permanent vs transitory components and economic fundamentals," Money Macro and Finance (MMF) Research Group Conference 2003 35, Money Macro and Finance Research Group.
    10. Julien Garnier, 2004. "UK in or UK Out? A Common Cycle Analysis Between the UK and the Euro Zone," Working Papers 2004-17, CEPII research center.

  42. James Mitchell & Richard J. Smith & Martin R. Weale, 2002. "Quantification of Qualitative Firm-Level Survey Data," Economic Journal, Royal Economic Society, vol. 112(478), pages 117-135, March.
    See citations under working paper version above.

Chapters

  1. James Mitchell & Aubrey Poon & Gian Luigi Mazzi, 2022. "Nowcasting Euro Area GDP Growth Using Bayesian Quantile Regression," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 51-72, Emerald Group Publishing Limited.

    Cited by:

    1. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.

  2. Stephen G. Hall & James Mitchell, 2009. "Recent Developments in Density Forecasting," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 5, pages 199-239, Palgrave Macmillan.

    Cited by:

    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Michael Clements, 2016. "Are Macroeconomic Density Forecasts Informative?," ICMA Centre Discussion Papers in Finance icma-dp2016-02, Henley Business School, University of Reading.
    3. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
    4. Dr Silvia Lui & Dr Martin Weale & Dr. James Mitchell, 2009. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," National Institute of Economic and Social Research (NIESR) Discussion Papers 343, National Institute of Economic and Social Research.
    5. Clements, Michael P., 2014. "Probability distributions or point predictions? Survey forecasts of US output growth and inflation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 99-117.
    6. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
    7. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    8. Michael P Clements & Ana Beatriz Galvao, 2017. "Data Revisions and Real-time Probabilistic Forecasting of Macroeconomic Variables," ICMA Centre Discussion Papers in Finance icma-dp2017-01, Henley Business School, University of Reading.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.