IDEAS home Printed from https://ideas.repec.org/p/aqr/wpaper/201706.html
   My bibliography  Save this paper

“Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming”

Author

Listed:
  • Oscar Claveria

    () (AQR-IREA, University of Barcelona)

  • Enric Monte

    () (Polytechnic University of Catalunya (UPC))

  • Salvador Torra

    () (Riskcenter-IREA, University of Barcelona)

Abstract

In this study we use agents’ expectations about the state of the economy to generate indicators of economic activity in twenty-six European countries grouped in five regions (Western, Eastern, and Southern Europe, and Baltic and Scandinavian countries). We apply a data-driven procedure based on evolutionary computation to transform survey variables in economic growth rates. In a first step, we design five independent experiments to derive the optimal combination of expectations that best replicates the evolution of economic growth in each region by means of genetic programming, limiting the integration schemes to the main mathematical operations. We then rank survey variables according to their performance in tracking economic activity, finding that agents’ “perception about the overall economy compared to last year” is the survey variable with the highest predictive power. In a second step, we assess the out-of-sample forecast accuracy of the evolved indicators. Although we obtain different results across regions, Austria, Slovakia, Portugal, Lithuania and Sweden are the economies of each region that show the best forecast results. We also find evidence that the forecasting performance of the survey-based indicators improves during periods of higher growth.

Suggested Citation

  • Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming”," AQR Working Papers 201706, University of Barcelona, Regional Quantitative Analysis Group, revised May 2017.
  • Handle: RePEc:aqr:wpaper:201706
    as

    Download full text from publisher

    File URL: http://www.ub.edu/irea/working_papers/2017/201711.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansson, Jesper & Jansson, Per & Lof, Marten, 2005. "Business survey data: Do they help in forecasting GDP growth?," International Journal of Forecasting, Elsevier, vol. 21(2), pages 377-389.
    2. Carlson, John A & Parkin, J Michael, 1975. "Inflation Expectations," Economica, London School of Economics and Political Science, vol. 42(166), pages 123-138, May.
    3. Maritta Paloviita, 2006. "Inflation Dynamics in the Euro Area and the Role of Expectations," Empirical Economics, Springer, vol. 31(4), pages 847-860, November.
    4. Stephane Dees & Pedro Soares Brinca, 2013. "Consumer confidence as a predictor of consumption spending: Evidence for the United States and the Euro area," International Economics, CEPII research center, issue 134, pages 1-14.
    5. Batchelor, R. A., 1982. "Expectations, output and inflation : The European experience," European Economic Review, Elsevier, vol. 17(1), pages 1-25.
    6. Jonsson, Thomas & Österholm, Pär, 2011. "The forecasting properties of survey-based wage-growth expectations," Economics Letters, Elsevier, vol. 113(3), pages 276-281.
    7. Breitung, Jörg & Schmeling, Maik, 2013. "Quantifying survey expectations: What’s wrong with the probability approach?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 142-154.
    8. Lee, Kevin C, 1994. "Formation of Price and Cost Inflation Expectations in British Manufacturing Industries: A Multi-Sectoral Analysis," Economic Journal, Royal Economic Society, vol. 104(423), pages 372-385, March.
    9. Vermeulen, Philip, 2014. "An evaluation of business survey indices for short-term forecasting: Balance method versus Carlson–Parkin method," International Journal of Forecasting, Elsevier, vol. 30(4), pages 882-897.
    10. Wren-Lewis, Simon, 1986. "An Econometric Model of U.K. Manufacturing Employment Using Survey Data on Expected Output," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(4), pages 297-316, October.
    11. Batchelor, Roy & Dua, Pami, 1998. "Improving macro-economic forecasts: The role of consumer confidence," International Journal of Forecasting, Elsevier, vol. 14(1), pages 71-81, March.
    12. Batchelor, R. A., 1981. "Aggregate expectations under the stable laws," Journal of Econometrics, Elsevier, vol. 16(2), pages 199-210, June.
    13. Ivaldi, Marc, 1992. "Survey Evidence on the Rationality of Expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(3), pages 225-241, July-Sept.
    14. repec:spr:qualqt:v:51:y:2017:i:6:d:10.1007_s11135-016-0416-0 is not listed on IDEAS
    15. Frieder Mokinski & Xuguang (Simon) Sheng & Jingyun Yang, 2015. "Measuring Disagreement in Qualitative Expectations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(5), pages 405-426, August.
    16. James Mitchell & Richard J. Smith & Martin R. Weale, 2005. "Forecasting Manufacturing Output Growth Using Firm-Level Survey Data," Manchester School, University of Manchester, vol. 73(4), pages 479-499, July.
    17. Lui, Silvia & Mitchell, James & Weale, Martin, 2011. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1128-1146, October.
    18. Common, Michael S, 1985. "Testing for Rational Expectations with Qualitative Survey Data," The Manchester School of Economic & Social Studies, University of Manchester, vol. 53(2), pages 138-148, June.
    19. Qiao, Zhuo & McAleer, Michael & Wong, Wing-Keung, 2009. "Linear and nonlinear causality between changes in consumption and consumer attitudes," Economics Letters, Elsevier, vol. 102(3), pages 161-164, March.
    20. Michela Nardo, 2003. "The Quantification of Qualitative Survey Data : A Critical Assessment," Journal of Economic Surveys, Wiley Blackwell, vol. 17(5), pages 645-668, December.
    21. Yang, Guangfei & Li, Xianneng & Wang, Jianliang & Lian, Lian & Ma, Tieju, 2015. "Modeling oil production based on symbolic regression," Energy Policy, Elsevier, vol. 82(C), pages 48-61.
    22. Wei, Liang-Ying, 2013. "A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX," Economic Modelling, Elsevier, vol. 33(C), pages 893-899.
    23. James Mitchell & Richard J. Smith & Martin R. Weale, 2002. "Quantification of Qualitative Firm-Level Survey Data," Economic Journal, Royal Economic Society, vol. 112(478), pages 117-135, March.
    24. repec:eee:touman:v:47:y:2015:i:c:p:213-223 is not listed on IDEAS
    25. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    26. Michael Maschek, 2010. "Intelligent Mutation Rate Control in an Economic Application of Genetic Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 35(1), pages 25-49, January.
    27. Lemmens, Aurelie & Croux, Christophe & Dekimpe, Marnik G., 2005. "On the predictive content of production surveys: A pan-European study," International Journal of Forecasting, Elsevier, vol. 21(2), pages 363-375.
    28. Evgenia Kudymowa & Johanna Garnitz & Klaus Wohlrabe, 2014. "Ifo World Economic Survey and the Business Cycle in Selected Countries," CESifo Forum, Ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 14(4), pages 51-57, January.
    29. Thomas Jonsson & Pär Österholm, 2012. "The properties of survey-based inflation expectations in Sweden," Empirical Economics, Springer, vol. 42(1), pages 79-94, February.
    30. Hannah Thinyane & Jonathan Millin, 2011. "Erratum to: An Investigation into the Use of Intelligent Systems for Currency Trading," Computational Economics, Springer;Society for Computational Economics, vol. 38(2), pages 205-205, August.
    31. repec:mes:eaeuec:v:54:y:2016:i:2:p:171-189 is not listed on IDEAS
    32. O Claveria & E Pons & J Surinach, 2006. "Quantification of Expectations. Are They Useful for Forecasting Inflation?," Economic Issues Journal Articles, Economic Issues, vol. 11(2), pages 19-38, September.
    33. repec:mes:eaeuec:v:52:y:2014:i:3:p:5-32 is not listed on IDEAS
    34. Hutson, Mark & Joutz, Fred & Stekler, Herman, 2014. "Interpreting and evaluating CESIfo's World Economic Survey directional forecasts," Economic Modelling, Elsevier, vol. 38(C), pages 6-11.
    35. Martinsen, Kjetil & Ravazzolo, Francesco & Wulfsberg, Fredrik, 2014. "Forecasting macroeconomic variables using disaggregate survey data," International Journal of Forecasting, Elsevier, vol. 30(1), pages 65-77.
    36. Lahiri, Kajal & Teigland, Christie, 1987. "On the normality of probability distributions of inflation and GNP forecasts," International Journal of Forecasting, Elsevier, vol. 3(2), pages 269-279.
    37. Franses, Philip Hans & Kranendonk, Henk C. & Lanser, Debby, 2011. "One model and various experts: Evaluating Dutch macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 482-495.
    38. Smith, Jeremy & McAleer, Michael, 1995. "Alternative Procedures for Converting Qualitative Response Data to Quantitative Expectations: An Application to Australian Manufacturing," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 165-185, April-Jun.
    39. Hannah Thinyane & Jonathan Millin, 2011. "An Investigation into the Use of Intelligent Systems for Currency Trading," Computational Economics, Springer;Society for Computational Economics, vol. 37(4), pages 363-374, April.
    40. Altug, Sumru & Çakmaklı, Cem, 2016. "Forecasting inflation using survey expectations and target inflation: Evidence for Brazil and Turkey," International Journal of Forecasting, Elsevier, vol. 32(1), pages 138-153.
    41. Abberger, Klaus, 2007. "Qualitative business surveys and the assessment of employment -- A case study for Germany," International Journal of Forecasting, Elsevier, vol. 23(2), pages 249-258.
    42. Klein, Lawrence R. & Özmucur, Süleyman, 2010. "The use of consumer and business surveys in forecasting," Economic Modelling, Elsevier, vol. 27(6), pages 1453-1462, November.
    43. Thomas Maag, 2009. "On the accuracy of the probability method for quantifying beliefs about inflation," KOF Working papers 09-230, KOF Swiss Economic Institute, ETH Zurich.
    44. Batchelor, Roy A & Orr, Adrian B, 1988. "Inflation Expectations Revisited," Economica, London School of Economics and Political Science, vol. 55(219), pages 317-331, August.
    45. Nolte, Ingmar & Pohlmeier, Winfried, 2007. "Using forecasts of forecasters to forecast," International Journal of Forecasting, Elsevier, vol. 23(1), pages 15-28.
    46. Maurizio Bovi, 2016. "The tale of two expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(6), pages 2677-2705, November.
    47. Sylvain Leduc & Keith Sill, 2013. "Expectations and Economic Fluctuations: An Analysis Using Survey Data," The Review of Economics and Statistics, MIT Press, vol. 95(4), pages 1352-1367, October.
    48. Batchelor, Roy & Dua, Pami, 1992. "Survey Expectations in the Time Series Consumption Function," The Review of Economics and Statistics, MIT Press, vol. 74(4), pages 598-606, November.
    49. Jean-Baptiste, Frédo, 2012. "Forecasting with the New Keynesian Phillips curve: Evidence from survey data," Economics Letters, Elsevier, vol. 117(3), pages 811-813.
    50. Jan Marc Berk, 1999. "Measuring inflation expectations: a survey data approach," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1467-1480.
    51. C. Lawrenz & F. Westerhoff, 2003. "Modeling Exchange Rate Behavior with a Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 21(3), pages 209-229, June.
    52. Stefan Mittnik & Peter A. Zadrozny, 2004. "Forecasting Quarterly German GDP at Monthly Intervals Using Monthly IFO Business Conditions Data," CESifo Working Paper Series 1203, CESifo Group Munich.
    53. Lahiri, Kajal & Zhao, Yongchen, 2015. "Quantifying survey expectations: A critical review and generalization of the Carlson–Parkin method," International Journal of Forecasting, Elsevier, vol. 31(1), pages 51-62.
    54. Claveria, Oscar & Pons, Ernest & Ramos, Raul, 2007. "Business and consumer expectations and macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 47-69.
    55. Pesaran, M Hashem, 1985. "Formation of Inflation Expectations in British Manufacturing Industries," Economic Journal, Royal Economic Society, vol. 95(380), pages 948-975, December.
    56. repec:cii:cepiei:2013-q2-134-1 is not listed on IDEAS
    57. Silvia Lui & James Mitchell & Martin Weale, 2011. "Qualitative business surveys: signal or noise?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 327-348, April.
    58. M. A. Kaboudan, 2000. "Genetic Programming Prediction of Stock Prices," Computational Economics, Springer;Society for Computational Economics, vol. 16(3), pages 207-236, December.
    59. Girardi, Alessandro, 2014. "Expectations and macroeconomic fluctuations in the euro area," Economics Letters, Elsevier, vol. 125(2), pages 315-318.
    60. Marcos Álvarez-Díaz & Alberto Álvarez, 2005. "Genetic multi-model composite forecast for non-linear prediction of exchange rates," Empirical Economics, Springer, vol. 30(3), pages 643-663, October.
    61. Balcombe, Kelvin, 1996. "The Carlson-Parkin method applied to NZ price expectations using QSBO survey data," Economics Letters, Elsevier, vol. 51(1), pages 51-57, April.
    62. James Mitchell & Richard J. Smith & Martin R. Weale & Stephen Wright & Eduardo L. Salazar, 2005. "An Indicator of Monthly GDP and an Early Estimate of Quarterly GDP Growth," Economic Journal, Royal Economic Society, vol. 115(501), pages 108-129, February.
    63. Georgios Vasilakis & Konstantinos Theofilatos & Efstratios Georgopoulos & Andreas Karathanasopoulos & Spiros Likothanassis, 2013. "A Genetic Programming Approach for EUR/USD Exchange Rate Forecasting and Trading," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 415-431, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Economic indicators; Qualitative survey data; Expectations; Symbolic regression; Evolutionary algorithms; Genetic programming JEL classification: C51; C55; C63; C83; C93;

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aqr:wpaper:201706. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bibiana Barnadas). General contact details of provider: http://edirc.repec.org/data/aqrubes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.