IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v27yi2p482-495.html
   My bibliography  Save this article

One model and various experts: Evaluating Dutch macroeconomic forecasts

Author

Listed:
  • Franses, Philip Hans
  • Kranendonk, Henk C.
  • Lanser, Debby

Abstract

The Netherlands Bureau for Economic Policy Analysis (CPB) uses a large macroeconomic model to create forecasts of various important macroeconomic variables. The outcomes of this model are usually filtered by experts, and it is the expert forecasts that are made available to the general public. In this paper we re-create the model forecasts for the period 1997-2008 and compare the expert forecasts with the pure model forecasts. Our key findings from the first time that this unique database has been analyzed are that (i) experts adjust upwards more often; (ii) expert adjustments are not autocorrelated, but their sizes do depend on the value of the model forecast; (iii) the CPB model forecasts are biased for a range of variables, but (iv) at the same time, the associated expert forecasts are more often unbiased; and that (v) expert forecasts are far more accurate than the model forecasts, particularly when the forecast horizon is short. In summary, the final CPB forecasts de-bias the model forecasts and lead to higher accuracies than the initial model forecasts.

Suggested Citation

  • Franses, Philip Hans & Kranendonk, Henk C. & Lanser, Debby, 2011. "One model and various experts: Evaluating Dutch macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 482-495, April.
  • Handle: RePEc:eee:intfor:v:27:y::i:2:p:482-495
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(10)00108-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Henk Don, 2004. "How econometric models help policy makers; theory and practice," CPB Discussion Paper 27, CPB Netherlands Bureau for Economic Policy Analysis.
    2. Philip Hans Franses & Rianne Legerstee, 2010. "Do experts' adjustments on model-based SKU-level forecasts improve forecast quality?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 331-340.
    3. Stekler, H.O., 2007. "The future of macroeconomic forecasting: Understanding the forecasting process," International Journal of Forecasting, Elsevier, vol. 23(2), pages 237-248.
    4. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    5. Goodwin, Paul, 2000. "Improving the voluntary integration of statistical forecasts and judgment," International Journal of Forecasting, Elsevier, vol. 16(1), pages 85-99.
    6. Henk Don & Johan Verbruggen, 2006. "Models and methods for economic policy; 60 years of evolution at CPB," CPB Discussion Paper 55, CPB Netherlands Bureau for Economic Policy Analysis.
    7. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    8. O'Connor, Marcus & Remus, William & Griggs, Ken, 1993. "Judgemental forecasting in times of change," International Journal of Forecasting, Elsevier, vol. 9(2), pages 163-172, August.
    9. Robert Fildes & Paul Goodwin, 2007. "Good and Bad Judgment in Forecasting: Lessons from Four Companies," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 8, pages 5-10, Fall.
    10. F. J. H. Don & J. P. Verbruggen, 2006. "Models and methods for economic policy: 60 years of evolution at CPB," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 60(2), pages 145-170, May.
    11. Franses, Philip Hans & Legerstee, Rianne, 2009. "Properties of expert adjustments on model-based SKU-level forecasts," International Journal of Forecasting, Elsevier, vol. 25(1), pages 35-47.
    12. Robert C. Blattberg & Stephen J. Hoch, 1990. "Database Models and Managerial Intuition: 50% Model + 50% Manager," Management Science, INFORMS, vol. 36(8), pages 887-899, August.
    13. Henk Kranendonk & Johan Verbruggen, 2007. "SAFFIER; a multi-purpose model of the Dutch economy for short-term and medium-term analyses," CPB Document 144, CPB Netherlands Bureau for Economic Policy Analysis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bolger, Fergus & Wright, George, 2017. "Use of expert knowledge to anticipate the future: Issues, analysis and directions," International Journal of Forecasting, Elsevier, vol. 33(1), pages 230-243.
    2. Chang, Chia-Lin & de Bruijn, Bert & Franses, Philip Hans & McAleer, Michael, 2013. "Analyzing fixed-event forecast revisions," International Journal of Forecasting, Elsevier, vol. 29(4), pages 622-627.
    3. Simionescu, Mihaela, 2014. "New Strategies to Improve the Accuracy of Predictions based on Monte Carlo and Bootstrap Simulations: An Application to Bulgarian and Romanian Inflation || Nuevas estrategias para mejorar la exactitud," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 18(1), pages 112-129, December.
    4. Philip Hans Franses & Max Welz, 2020. "Does More Expert Adjustment Associate with Less Accurate Professional Forecasts?," JRFM, MDPI, vol. 13(3), pages 1-8, March.
    5. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    6. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming," IREA Working Papers 201711, University of Barcelona, Research Institute of Applied Economics, revised May 2017.
    7. Sun, Yuying & Wang, Shouyang & Zhang, Xun, 2018. "How efficient are China's macroeconomic forecasts? Evidences from a new forecasting evaluation approach," Economic Modelling, Elsevier, vol. 68(C), pages 506-513.
    8. Philip Hans Franses & Bert Bruijn, 2017. "Benchmarking Judgmentally Adjusted Forecasts," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 22(1), pages 3-11, January.
    9. Chang, Chia Lin & Franses, Philip Hans & Mcaleer, Michael, 2012. "Evaluating Individual and Mean Non-Replicable Forecasts," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 22-43, September.
    10. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Empirical modelling of survey-based expectations for the design of economic indicators in five European regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 205-227, May.
    11. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents' expectations. Different patterns of anticipation of the 2008 financial crisis”," IREA Working Papers 201511, University of Barcelona, Research Institute of Applied Economics, revised Mar 2015.
    12. Nibbering, Didier & Paap, Richard & van der Wel, Michel, 2018. "What do professional forecasters actually predict?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 288-311.
    13. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.
    14. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2014. "Evaluating Macroeconomic Forecasts: A Concise Review Of Some Recent Developments," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 195-208, April.
    15. Volha Audzei, 2016. "Confidence Cycles and Liquidity Hoarding," Working Papers 2016/07, Czech National Bank.
    16. Fildes, Robert, 2015. "Forecasters and rationality—A comment on Fritsche et al., Forecasting the Brazilian Real and Mexican Peso: Asymmetric loss, forecast rationality and forecaster herding," International Journal of Forecasting, Elsevier, vol. 31(1), pages 140-143.
    17. Philip Franses, 2014. "Evaluating CPB’s Forecasts," De Economist, Springer, vol. 162(3), pages 215-221, September.
    18. Simionescu, Mihaela, 2015. "A Comparative Analysis Of Macroeconomic Forecasts Accuracy In Spain And Romania," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 6(1), pages 67-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Fildes, Robert & Goodwin, Paul, 2016. "Do ‘big losses’ in judgmental adjustments to statistical forecasts affect experts’ behaviour?," European Journal of Operational Research, Elsevier, vol. 249(3), pages 842-852.
    2. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    3. Rianne Legerstee & Philip Hans Franses, 2014. "Do Experts’ SKU Forecasts Improve after Feedback?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 69-79, January.
    4. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    5. Legerstee, R. & Franses, Ph.H.B.F. & Paap, R., 2011. "Do experts incorporate statistical model forecasts and should they?," Econometric Institute Research Papers EI2011-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Philip Hans Franses & Rianne Legerstee, 2010. "Do experts' adjustments on model-based SKU-level forecasts improve forecast quality?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 331-340.
    7. Baecke, Philippe & De Baets, Shari & Vanderheyden, Karlien, 2017. "Investigating the added value of integrating human judgement into statistical demand forecasting systems," International Journal of Production Economics, Elsevier, vol. 191(C), pages 85-96.
    8. Fildes, Robert & Goodwin, Paul, 2021. "Stability in the inefficient use of forecasting systems: A case study in a supply chain company," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1031-1046.
    9. Franses, Philip Hans & Legerstee, Rianne, 2013. "Do statistical forecasting models for SKU-level data benefit from including past expert knowledge?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 80-87.
    10. De Baets, Shari & Harvey, Nigel, 2018. "Forecasting from time series subject to sporadic perturbations: Effectiveness of different types of forecasting support," International Journal of Forecasting, Elsevier, vol. 34(2), pages 163-180.
    11. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    12. Franses, Philip Hans, 2013. "Improving judgmental adjustment of model-based forecasts," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 1-8.
    13. Song, Haiyan & Gao, Bastian Z. & Lin, Vera S., 2013. "Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system," International Journal of Forecasting, Elsevier, vol. 29(2), pages 295-310.
    14. Bert de Bruijn & Philip Hans Franses, 2012. "Managing Sales Forecasters," Tinbergen Institute Discussion Papers 12-131/III, Tinbergen Institute.
    15. Leitner, Johannes & Leopold-Wildburger, Ulrike, 2011. "Experiments on forecasting behavior with several sources of information - A review of the literature," European Journal of Operational Research, Elsevier, vol. 213(3), pages 459-469, September.
    16. Chang, Chia-Lin & Franses, Philip Hans & McAleer, Michael, 2011. "How accurate are government forecasts of economic fundamentals? The case of Taiwan," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1066-1075, October.
    17. P H Franses & R Legerstee, 2011. "Experts' adjustment to model-based SKU-level forecasts: does the forecast horizon matter?," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 537-543, March.
    18. Katsagounos, Ilias & Thomakos, Dimitrios D. & Litsiou, Konstantia & Nikolopoulos, Konstantinos, 2021. "Superforecasting reality check: Evidence from a small pool of experts and expedited identification," European Journal of Operational Research, Elsevier, vol. 289(1), pages 107-117.
    19. F Caniato & M Kalchschmidt & S Ronchi, 2011. "Integrating quantitative and qualitative forecasting approaches: organizational learning in an action research case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 413-424, March.
    20. Goodwin, Paul & Fildes, Robert & Lawrence, Michael & Stephens, Greg, 2011. "Restrictiveness and guidance in support systems," Omega, Elsevier, vol. 39(3), pages 242-253, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y::i:2:p:482-495. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.