IDEAS home Printed from https://ideas.repec.org/p/cbt/econwp/12-12.html
   My bibliography  Save this paper

Evaluating Macroeconomic Forecasts: A Concise Review of Some Recent Developments

Author

Listed:

Abstract

Macroeconomic forecasts are frequently produced, widely published, inten¬sively discussed and comprehensively used. The formal evaluation of such forecasts has a long research history. Recently, a new angle to the evaluation of forecasts has been addressed, and in this review we analyse some recent developments from that perspective. The literature on forecast evaluation predominantly assumes that macro¬economic forecasts are generated from econometric models. In practice, however, most macroeconomic forecasts, such as those from the IMF, World Bank, OECD, Federal Reserve Board, Federal Open Market Committee (FOMC) and the ECB, are typically based on econometric model forecasts jointly with human intuition. This seemingly inevitable combination renders most of these forecasts biased and, as such, their evaluation becomes non-standard. In this review, we consider the evaluation of two forecasts in which: (i) the two forecasts are generated from two distinct econo¬metric models; (ii) one forecast is generated from an econometric model and the other is obtained as a combination of a model and intuition; and (iii) the two forecasts are generated from two distinct (but unknown) combinations of different models and intu¬ition. It is shown that alternative tools are needed to compare and evaluate the fore-casts in each of these three situations. These alternative techniques are illustrated by comparing the forecasts from the (econometric) Staff of the Federal Reserve Board and the FOMC on inflation, unemployment and real GDP growth. It is shown that the FOMC does not forecast significantly better than the Staff, and that the intuition of the FOMC does not add significantly in forecasting the actual values of the economic fundamentals. This would seem to belie the purported expertise of the FOMC.

Suggested Citation

  • Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2012. "Evaluating Macroeconomic Forecasts: A Concise Review of Some Recent Developments," Working Papers in Economics 12/12, University of Canterbury, Department of Economics and Finance.
  • Handle: RePEc:cbt:econwp:12/12
    as

    Download full text from publisher

    File URL: http://www.econ.canterbury.ac.nz/RePEc/cbt/econwp/1212.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christina D. Romer & David H. Romer, 2004. "A New Measure of Monetary Shocks: Derivation and Implications," American Economic Review, American Economic Association, pages 1055-1084.
    2. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    3. McAleer, Michael, 1992. "Efficient Estimation: The Rao-Zyskind Condition, Kruskal's Theorem and Ordinary Least Squares," The Economic Record, The Economic Society of Australia, vol. 68(200), pages 65-72, March.
    4. Eroglu, Cuneyt & Croxton, Keely L., 2010. "Biases in judgmental adjustments of statistical forecasts: The role of individual differences," International Journal of Forecasting, Elsevier, vol. 26(1), pages 116-133, January.
    5. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, pages 85-110.
    6. Chia-Ling Chang & Thanchanok Khamkaew & Michael McAleer & Roengchai Tansuchat, 2009. "Interdependence of International Tourism Demand and Volatility in Leading ASEAN Destinations," CARF F-Series CARF-F-190, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    7. Franses, Philip Hans & Kranendonk, Henk C. & Lanser, Debby, 2011. "One model and various experts: Evaluating Dutch macroeconomic forecasts," International Journal of Forecasting, Elsevier, pages 482-495.
    8. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    9. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2009. "Expert opinion versus expertise in forecasting," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 334-346.
    10. West, Kenneth D & Wilcox, David W, 1996. "A Comparison of Alternative Instrumental Variables Estimators of a Dynamic Linear Model," Journal of Business & Economic Statistics, American Statistical Association, pages 281-293.
    11. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    12. Roy Batchelor, 2007. "Forecaster Behaviour and Bias in Macroeconomic Forecasts," ifo Working Paper Series 39, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    13. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    14. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, pages 788-829.
    15. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    16. Heij, Christiaan & van Dijk, Dick & Groenen, Patrick J.F., 2011. "Real-time macroeconomic forecasting with leading indicators: An empirical comparison," International Journal of Forecasting, Elsevier, vol. 27(2), pages 466-481, April.
    17. Chang, Chia-Lin & Franses, Philip Hans & McAleer, Michael, 2011. "How accurate are government forecasts of economic fundamentals? The case of Taiwan," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1066-1075, October.
    18. Batchelor, Roy, 2007. "Bias in macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 23(2), pages 189-203.
    19. Franses, Philip Hans & Legerstee, Rianne, 2009. "Properties of expert adjustments on model-based SKU-level forecasts," International Journal of Forecasting, Elsevier, vol. 25(1), pages 35-47.
    20. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    21. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 671-690.
    22. Fiebig, Denzil G. & McAleer, Michael & Bartels, Robert, 1992. "Properties of ordinary least squares estimators in regression models with nonspherical disturbances," Journal of Econometrics, Elsevier, pages 321-334.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bratu Mihaela, 2013. "An Evaluation Of Usa Unemployment Rate Forecasts In Terms Of Accuracy And Bias. Empirical Methods To Improve The Forecasts Accuracy," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 1, pages 170-180, February.
    2. Miquel Clar-Lopez & Jordi López-Tamayo & Raúl Ramos, 2014. "Unemployment forecasts, time varying coefficient models and the Okun’s law in Spanish regions," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 247-262.
    3. Mihaela Simionescu (Bratu), 2014. "The Performance of Predictions Based on the Dobrescu Macromodel for the Romanian Economy," Journal for Economic Forecasting, Institute for Economic Forecasting, pages 179-195.
    4. Mihaela BRATU (SIMIONESCU), 2012. "A Strategy To Improve The Gdp Index Forcasts In Romania Using Moving Average Models Of Historical Errors Of The Dobrescu Macromodel," Romanian Journal of Economics, Institute of National Economy, vol. 35(2(44)), pages 128-138, December.
    5. João Amador & Ana Cristina Soares, 2013. "Competition in the Portuguese economy: Estimated price-cost margins under imperfect labour markets," Economic Bulletin and Financial Stability Report Articles, Banco de Portugal, Economics and Research Department.
    6. Simionescu Mihaela, 2015. "Kalman Filter or VAR Models to Predict Unemployment Rate in Romania?," Naše gospodarstvo/Our economy, De Gruyter Open, pages 3-21.
    7. Mihaela Bratu, 2012. "A Strategy to Improve the Survey of Professional Forecasters (SPF) Predictions Using Bias-Corrected-Accelerated (BCA) Bootstrap Forecast Intervals," International Journal of Synergy and Research, ToKnowPress, vol. 1(2), pages 45-59.
    8. Mihaela Simionescu, 2015. "The Improvement of Unemployment Rate Predictions Accuracy," Prague Economic Papers, University of Economics, Prague, pages 274-286.

    More about this item

    Keywords

    Macroeconomic forecasts; econometric models; human intuition; biased forecasts; forecast performance; forecast evaluation; forecast comparison;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbt:econwp:12/12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Albert Yee). General contact details of provider: http://edirc.repec.org/data/decannz.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.