IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v31y2015i1p51-62.html
   My bibliography  Save this article

Quantifying survey expectations: A critical review and generalization of the Carlson–Parkin method

Author

Listed:
  • Lahiri, Kajal
  • Zhao, Yongchen

Abstract

This paper provides a critical review of the popular Carlson–Parkin (CP) quantification method using household-level data from the University of Michigan’s Survey of Consumers. We find strong evidence against the threshold constancy, symmetry, homogeneity, and overall unbiasedness assumptions of the CP method. To address these violations, we generalize the CP method using a hierarchical ordered probit (HOPIT) model. By comparing the quantified inflation expectations with quantitative expectations obtained from the same set of households directly, we show that the generalized model performs better than the CP method. In particular, when the CP unbiasedness assumption is replaced by a time-varying calibration, the resulting quantified series is found to track the quantitative benchmark well, over diverse time periods.

Suggested Citation

  • Lahiri, Kajal & Zhao, Yongchen, 2015. "Quantifying survey expectations: A critical review and generalization of the Carlson–Parkin method," International Journal of Forecasting, Elsevier, vol. 31(1), pages 51-62.
  • Handle: RePEc:eee:intfor:v:31:y:2015:i:1:p:51-62
    DOI: 10.1016/j.ijforecast.2014.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207014000995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2014.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dasgupta, Susmita & Lahiri, Kajal, 1992. "A Comparative Study of Alternative Methods of Quantifying Qualitative Survey Responses Using NAPM Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 391-400, October.
    2. Silvia Lui & James Mitchell & Martin Weale, 2011. "Qualitative business surveys: signal or noise?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 327-348, April.
    3. Lui, Silvia & Mitchell, James & Weale, Martin, 2011. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1128-1146, October.
    4. Magnus Forsells & Geoff Kenny, 2004. "Survey Expectations, Rationality and the Dynamics of Euro Area Inflation," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2004(1), pages 13-41.
    5. Smith, Jeremy & McAleer, Michael, 1995. "Alternative Procedures for Converting Qualitative Response Data to Quantitative Expectations: An Application to Australian Manufacturing," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 165-185, April-Jun.
    6. Pesaran, M. Hashem & Weale, Martin, 2006. "Survey Expectations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 14, pages 715-776, Elsevier.
    7. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, Oxford University Press, vol. 117(4), pages 1295-1328.
    8. James Mitchell & Richard J. Smith & Martin R. Weale, 2002. "Quantification of Qualitative Firm-Level Survey Data," Economic Journal, Royal Economic Society, vol. 112(478), pages 117-135, March.
    9. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    10. Balcombe, Kelvin, 1996. "The Carlson-Parkin method applied to NZ price expectations using QSBO survey data," Economics Letters, Elsevier, vol. 51(1), pages 51-57, April.
    11. Breitung, Jörg & Schmeling, Maik, 2013. "Quantifying survey expectations: What’s wrong with the probability approach?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 142-154.
    12. Rolf Scheufele, 2011. "Are Qualitative Inflation Expectations Useful to Predict Inflation?," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2011(1), pages 29-53.
    13. repec:cup:apsrev:v:98:y:2004:i:01:p:191-207_00 is not listed on IDEAS
    14. Souleles, Nicholas S, 2004. "Expectations, Heterogeneous Forecast Errors, and Consumption: Micro Evidence from the Michigan Consumer Sentiment Surveys," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(1), pages 39-72, February.
    15. James Mitchell & Richard J. Smith & Martin R. Weale, 2005. "Forecasting Manufacturing Output Growth Using Firm‐Level Survey Data," Manchester School, University of Manchester, vol. 73(4), pages 479-499, July.
    16. Christian M. Dahl & Lin Xia, 2004. "Quantification of Qualitative Survey Data and Test of Consistent Expectations: A New Likelihood Approach," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2004(1), pages 71-92.
    17. Kajal Lahiri & Xuguang Sheng, 2010. "Measuring forecast uncertainty by disagreement: The missing link," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 514-538.
    18. James Mitchell & Richard J. Smith & Martin R. Weale, 2005. "Forecasting Manufacturing Output Growth Using Firm‐Level Survey Data," Manchester School, University of Manchester, vol. 73(4), pages 479-499, July.
    19. William H. Greene & David A. Hensher, 2010. "Ordered Choices and Heterogeneity in Attribute Processing," Journal of Transport Economics and Policy, University of Bath, vol. 44(3), pages 331-364, September.
    20. Michela Nardo, 2003. "The Quantification of Qualitative Survey Data: A Critical Assessment," Journal of Economic Surveys, Wiley Blackwell, vol. 17(5), pages 645-668, December.
    21. Kanoh, Satoru & Li, Zhi Dong, 1990. "A Method of Exploring the Mechanism of Inflationary Expectations Based on Qualitative Survey Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(4), pages 395-403, October.
    22. Batchelor, Roy A & Orr, Adrian B, 1988. "Inflation Expectations Revisited," Economica, London School of Economics and Political Science, vol. 55(219), pages 317-331, August.
    23. Richard Curtin, 2007. "Consumer Sentiment Surveys: Worldwide Review and Assessment," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2007(1), pages 7-42.
    24. Claveria, Oscar & Pons, Ernest & Ramos, Raul, 2007. "Business and consumer expectations and macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 47-69.
    25. Carlson, John A & Parkin, J Michael, 1975. "Inflation Expectations," Economica, London School of Economics and Political Science, vol. 42(166), pages 123-138, May.
    26. Mitchell, James, 2002. "The use of non-normal distributions in quantifying qualitative survey data on expectations," Economics Letters, Elsevier, vol. 76(1), pages 101-107, June.
    27. Fishe, Raymond P. H. & Lahiri, Kajal, 1981. "On the estimation of inflationary expectations from qualitative responses," Journal of Econometrics, Elsevier, vol. 16(1), pages 89-102, May.
    28. Fishe, Raymond P H & Idson, Todd L, 1990. "Information-Induced Heteroscedasticity in Price Expectations Data," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 304-312, May.
    29. Batchelor, R A, 1986. "Quantitative v. Qualitative Measures of Inflation Expectations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 48(2), pages 99-120, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "Tracking economic growth by evolving expectations via genetic programming: A two-step approach," Working Papers XREAP2018-4, Xarxa de Referència en Economia Aplicada (XREAP), revised Oct 2018.
    2. Rina Rosenblatt-Wisch & Rolf Scheufele, 2015. "Quantification and characteristics of household inflation expectations in Switzerland," Applied Economics, Taylor & Francis Journals, vol. 47(26), pages 2699-2716, June.
    3. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    4. Das, Abhiman & Lahiri, Kajal & Zhao, Yongchen, 2019. "Inflation expectations in India: Learning from household tendency surveys," International Journal of Forecasting, Elsevier, vol. 35(3), pages 980-993.
    5. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming," IREA Working Papers 201711, University of Barcelona, Research Institute of Applied Economics, revised May 2017.
    6. Yasutomo Murasawa, 2020. "Measuring public inflation perceptions and expectations in the UK," Empirical Economics, Springer, vol. 59(1), pages 315-344, July.
    7. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    8. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Empirical modelling of survey-based expectations for the design of economic indicators in five European regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 205-227, May.
    9. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents' expectations. Different patterns of anticipation of the 2008 financial crisis”," IREA Working Papers 201511, University of Barcelona, Research Institute of Applied Economics, revised Mar 2015.
    10. Oscar Claveria, 2021. "Forecasting with Business and Consumer Survey Data," Forecasting, MDPI, Open Access Journal, vol. 3(1), pages 1-22, February.
    11. Murasawa, Yasutomo, 2017. "Measuring the Distributions of Public Inflation Perceptions and Expectations in the UK," MPRA Paper 76244, University Library of Munich, Germany.
    12. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kajal Lahiri & Yongchen Zhao, 2013. "Quantifying Heterogeneous Survey Expectations: The Carlson-Parkin Method Revisited," Discussion Papers 13-08, University at Albany, SUNY, Department of Economics.
    2. Breitung, Jörg & Schmeling, Maik, 2013. "Quantifying survey expectations: What’s wrong with the probability approach?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 142-154.
    3. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
    4. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming," IREA Working Papers 201711, University of Barcelona, Research Institute of Applied Economics, revised May 2017.
    5. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.
    6. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "Tracking economic growth by evolving expectations via genetic programming: A two-step approach," Working Papers XREAP2018-4, Xarxa de Referència en Economia Aplicada (XREAP), revised Oct 2018.
    7. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
    8. Oscar Claveria, 2021. "Forecasting with Business and Consumer Survey Data," Forecasting, MDPI, Open Access Journal, vol. 3(1), pages 1-22, February.
    9. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Empirical modelling of survey-based expectations for the design of economic indicators in five European regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 205-227, May.
    10. Bovi, Maurizio, 2013. "Are the representative agent’s beliefs based on efficient econometric models?," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 633-648.
    11. Nolte, Ingmar & Pohlmeier, Winfried, 2007. "Using forecasts of forecasters to forecast," International Journal of Forecasting, Elsevier, vol. 23(1), pages 15-28.
    12. Sarah M. Lein & Thomas Maag, 2011. "The Formation Of Inflation Perceptions: Some Empirical Facts For European Countries," Scottish Journal of Political Economy, Scottish Economic Society, vol. 58(2), pages 155-188, May.
    13. Das, Abhiman & Lahiri, Kajal & Zhao, Yongchen, 2019. "Inflation expectations in India: Learning from household tendency surveys," International Journal of Forecasting, Elsevier, vol. 35(3), pages 980-993.
    14. Oscar Claveria & Enric Monte & Salvador Torra, 2015. "“Self-organizing map analysis of agents’ expectations. Different patterns of anticipation of the 2008 financial crisis”," AQR Working Papers 201508, University of Barcelona, Regional Quantitative Analysis Group, revised Mar 2015.
    15. Olivier Biau & Hélène Erkel-Rousse & Nicolas Ferrari, 2006. "Réponses individuelles aux enquêtes de conjoncture et prévision de la production manufacturière," Économie et Statistique, Programme National Persée, vol. 395(1), pages 91-116.
    16. Lui, Silvia & Mitchell, James & Weale, Martin, 2011. "The utility of expectational data: Firm-level evidence using matched qualitative-quantitative UK surveys," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1128-1146, October.
    17. Hutson, Mark & Joutz, Fred & Stekler, Herman, 2014. "Interpreting and evaluating CESIfo's World Economic Survey directional forecasts," Economic Modelling, Elsevier, vol. 38(C), pages 6-11.
    18. Thomas Maag, 2009. "On the accuracy of the probability method for quantifying beliefs about inflation," KOF Working papers 09-230, KOF Swiss Economic Institute, ETH Zurich.
    19. Loffler, Gunter, 1999. "Refining the Carlson-Parkin method," Economics Letters, Elsevier, vol. 64(2), pages 167-171, August.
    20. Francisco Dias & Cláudia Duarte & António Rua, 2010. "Inflation expectations in the euro area: are consumers rational?," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 146(3), pages 591-607, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:31:y:2015:i:1:p:51-62. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.