IDEAS home Printed from https://ideas.repec.org/p/aoz/wpaper/62.html

Common trends in producers’ expectations, the nonlinear linkage with Uruguayan GDP and its implications in economic growth forecasting

Author

Listed:
  • Bibiana Lanzilotta

    (Universidad de la República)

  • Juan Gabriel Brida

    (Universidad de la República)

  • Lucía Rosich

    (Universidad de la República)

Abstract

Este trabajo estudia las tendencias comunes entre las expectativas de los productores industriales y su interdependencia con el crecimiento económico del Uruguay en las últimas dos décadas (1998 – 2017). Se utilizaron las series de expectativas recabadas por la Cámara de Industrias del Uruguay clasificadas en cuatro grupos industriales: exportadoras, bajo comercio, sustitutivas de importación y comercio intra rama. En base a la estimación de Modelos Estructurales Multivariantes, se encontró un nivel común entre los indicadores de expectativas de los cuatro grupos industriales. El grupo que lidera las expectativas de todas las empresas pertenecientes a la industria manufacturera es el más expuesto a la competencia internacional. En consecuencia, el componente tendencial de las empresas exportadoras impulsa al de los otros grupos.

Suggested Citation

  • Bibiana Lanzilotta & Juan Gabriel Brida & Lucía Rosich, 2021. "Common trends in producers’ expectations, the nonlinear linkage with Uruguayan GDP and its implications in economic growth forecasting," Working Papers 62, Red Nacional de Investigadores en Economía (RedNIE).
  • Handle: RePEc:aoz:wpaper:62
    as

    Download full text from publisher

    File URL: https://drive.google.com/file/d/1a6qFrKUa3vDpa3bOdQOuix5puDFiijOu/view
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Oscar Claveria & Enric Monte & Salvador Torra, 2020. "“Spectral analysis of business and consumer survey data”," AQR Working Papers 2012002, University of Barcelona, Regional Quantitative Analysis Group, revised May 2020.

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aoz:wpaper:62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Laura Inés D Amato (email available below). General contact details of provider: https://edirc.repec.org/data/redniar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.