IDEAS home Printed from
   My bibliography  Save this paper

Pronóstico del Consumo Privado: Usando datos de alta frecuencia para el pronóstico de variables de baja frecuencia


  • Gustavo Adolfo HERNANDEZ DIAZ





Uno de los componentes más importantes del PIB es el consumo de los hogares, por lo cual el pronóstico de esta variable es clave para poder evaluar y predecir el comportamiento de la actividad económica. En este trabajo se introducen dos elementos innovadores para su predicción, primero se incorpora dentro de la función de consumo el índice de confianza al consumidor, con el fin de involucrar un indicador líder del comportamiento de los consumidores y el segundo es el uso de metodologías econométricas en las que se incorporan series de alta frecuencia para el pronóstico de series de baja frecuencia, con el fin de no perder información que pueda ser valiosa. Se encuentra que el pronóstico dentro de la muestra ha sido bastante cercano a los datos reales, aunque los intervalos de confianza del pronóstico pueden ser amplios.

Suggested Citation

  • Gustavo Adolfo HERNANDEZ DIAZ & Margarita MARÍN JARAMILLO, 2016. "Pronóstico del Consumo Privado: Usando datos de alta frecuencia para el pronóstico de variables de baja frecuencia," Archivos de Economía 014828, Departamento Nacional de Planeación.
  • Handle: RePEc:col:000118:014828

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    2. Sydney C. Ludvigson, 2004. "Consumer Confidence and Consumer Spending," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 29-50, Spring.
    3. Mark J. Holmes & James Mitchell & Brian Silverstone, 2009. "Architects As Nowcasters Of Housing Construction," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210(1), pages 111-122, October.
    4. Michel De Vroey & Pierre Malgrange, 2016. "Macroeconomics," Chapters, in: Gilbert Faccarello & Heinz D. Kurz (ed.), Handbook on the History of Economic Analysis Volume III, chapter 27, pages 372-390, Edward Elgar Publishing.
    5. Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
    6. Juan Manuel Julio & Anderson Grajales, 2011. "¿Qué nos dicen los índices de confianza?," Borradores de Economia 659, Banco de la Republica de Colombia.
    7. Christian Dreger & Konstantin Arkadievich Kholodilin, 2013. "Forecasting Private Consumption by Consumer Surveys," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 10-18, January.
    8. Kajal Lahiri & George Monokroussos & Yongchen Zhao, 2016. "Forecasting Consumption: the Role of Consumer Confidence in Real Time with many Predictors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1254-1275, November.
    9. Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
    10. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    11. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    12. Carlson, John A & Parkin, J Michael, 1975. "Inflation Expectations," Economica, London School of Economics and Political Science, vol. 42(166), pages 123-138, May.
    13. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
    2. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    3. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    4. Raul Ibarra & Luis M. Gomez-Zamudio, 2017. "Are Daily Financial Data Useful for Forecasting GDP? Evidence from Mexico," Economía Journal, The Latin American and Caribbean Economic Association - LACEA, vol. 0(Spring 20), pages 173-203, April.
    5. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    6. Roy Verbaan & Wilko Bolt & Carin van der Cruijsen, 2017. "Using debit card payments data for nowcasting Dutch household consumption," DNB Working Papers 571, Netherlands Central Bank, Research Department.
    7. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    8. Stefan Neuwirth, 2017. "Time-varying mixed frequency forecasting: A real-time experiment," KOF Working papers 17-430, KOF Swiss Economic Institute, ETH Zurich.
    9. Juhro, Solikin M. & Iyke, Bernard Njindan, 2020. "Consumer confidence and consumption expenditure in Indonesia," Economic Modelling, Elsevier, vol. 89(C), pages 367-377.
    10. Harchaoui, Tarek M. & Janssen, Robert V., 2018. "How can big data enhance the timeliness of official statistics?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 225-234.
    11. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, Open Access Journal, vol. 14(5), pages 1-24, February.
    12. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    13. Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Empirical modelling of survey-based expectations for the design of economic indicators in five European regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 205-227, May.
    14. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
    15. Willem Vanlaer & Samantha Bielen & Wim Marneffe, 2020. "Consumer Confidence and Household Saving Behaviors: A Cross-Country Empirical Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 677-721, January.
    16. Stephen Bruestle & W. Mark Crain, 2015. "A mean-variance approach to forecasting with the consumer confidence index," Applied Economics, Taylor & Francis Journals, vol. 47(23), pages 2430-2444, May.
    17. Michal Franta & David Havrlant & Marek Rusnák, 2016. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 165-185, December.
    18. Turhan, Ibrahim M. & Sensoy, Ahmet & Hacihasanoglu, Erk, 2015. "Shaping the manufacturing industry performance: MIDAS approach," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 286-290.
    19. Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
    20. Ghysels, Eric & Qian, Hang, 2019. "Estimating MIDAS regressions via OLS with polynomial parameter profiling," Econometrics and Statistics, Elsevier, vol. 9(C), pages 1-16.

    More about this item


    Consumo Privado; Pronósticos; Modelos Bridge; MIxed DAta Sample (MIDAS);
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
    • Y - Miscellaneous Categories
    • B51 - Schools of Economic Thought and Methodology - - Current Heterodox Approaches - - - Socialist; Marxian; Sraffian

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000118:014828. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Carlos Fernando Rincon Rojas). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.