IDEAS home Printed from https://ideas.repec.org/p/bdi/wptemi/td_1027_15.html
   My bibliography  Save this paper

On the conditional distribution of euro area inflation forecast

Author

Listed:
  • Fabio Busetti

    (Bank of Italy)

  • Michele Caivano

    (Bank of Italy)

  • Lisa Rodano

    (Bank of Italy)

Abstract

The paper uses dynamic quantile regressions to estimate and forecast the conditional distribution of euro-area inflation. As in a Phillips curve relationship we assume that inflation quantiles depend on past inflation, the output gap, and other determinants, namely oil prices and the exchange rate. We find significant time variation in the shape of the distribution. Overall, the quantile regression approach describes the distribution of inflation better than a benchmark univariate trend-cycle model with stochastic volatility, which is known to perform very well in forecasting inflation. In an out-of-sample prediction exercise, the quantile regression approach provides forecasts of the conditional distribution of inflation that are superior, overall, to those produced by the benchmark model. Averaging the distribution forecasts of the different models improves robustness and in some cases results in the greatest accuracy of distributional forecasts.

Suggested Citation

  • Fabio Busetti & Michele Caivano & Lisa Rodano, 2015. "On the conditional distribution of euro area inflation forecast," Temi di discussione (Economic working papers) 1027, Bank of Italy, Economic Research and International Relations Area.
  • Handle: RePEc:bdi:wptemi:td_1027_15
    as

    Download full text from publisher

    File URL: http://www.bancaditalia.it/pubblicazioni/temi-discussione/2015/2015-1027/en_tema_1027.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clive W. J. Granger & Yongil Jeon, 2011. "The Evolution of the Phillips Curve: A Modern Time Series Viewpoint," Economica, London School of Economics and Political Science, vol. 78(309), pages 51-66, January.
    2. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    3. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    4. Mark Gertler & Jordi Gali & Richard Clarida, 1999. "The Science of Monetary Policy: A New Keynesian Perspective," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1661-1707, December.
    5. De Rossi, Giuliano & Harvey, Andrew, 2009. "Quantiles, expectiles and splines," Journal of Econometrics, Elsevier, vol. 152(2), pages 179-185, October.
    6. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    7. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
    8. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
    9. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    10. Mark Gertler & Jordi Gali & Richard Clarida, 1999. "The Science of Monetary Policy: A New Keynesian Perspective," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1661-1707, December.
    11. Andrea Stella & James H. Stock, 2012. "A state-dependent model for inflation forecasting," International Finance Discussion Papers 1062, Board of Governors of the Federal Reserve System (U.S.).
    12. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "Inflation and monetary policy in the twentieth century," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 27(Q I), pages 22-45.
    13. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    14. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
    15. Buchinsky, Moshe, 1995. "Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study," Journal of Econometrics, Elsevier, vol. 68(2), pages 303-338, August.
    16. Manzan, Sebastiano & Zerom, Dawit, 2013. "Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?," International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
    17. Claudia Miani & Stefano Siviero, 2010. "A non-parametric model-based approach to uncertainty and risk analysis of macroeconomic forecast," Temi di discussione (Economic working papers) 758, Bank of Italy, Economic Research and International Relations Area.
    18. Wolters Maik H. & Tillmann Peter, 2015. "The changing dynamics of US inflation persistence: a quantile regression approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 161-182, April.
    19. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
    20. Marianna Riggi & Fabrizio Venditti, 2014. "Surprise! Euro area inflation has fallen," Questioni di Economia e Finanza (Occasional Papers) 237, Bank of Italy, Economic Research and International Relations Area.
    21. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    22. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    23. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
    24. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    25. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    26. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR ‘Fan’ Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
    27. Fabio Busetti & Andrew Harvey, 2010. "Tests of strict stationarity based on quantile indicators," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 435-450, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sirio Aramonte, 2022. "Inflation risk and the labor market: beneath the surface of a flat Phillips curve," BIS Working Papers 1054, Bank for International Settlements.
    2. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
    3. Stéphane Lhuissier & Aymeric Ortmans & Fabien Tripier, 2024. "The Risk of Inflation Dispersion in the Euro Area," Working papers 954, Banque de France.
    4. Alex Tagliabracci, 2020. "Asymmetry in the conditional distribution of euro-area inflation," Temi di discussione (Economic working papers) 1270, Bank of Italy, Economic Research and International Relations Area.
    5. Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021. "The time-varying risk of Italian GDP," Economic Modelling, Elsevier, vol. 101(C).
    6. Ryan Niladri Banerjee & Juan Contreras & Aaron Mehrotra & Fabrizio Zampolli, 2020. "Inflation at risk in advanced and emerging economies," BIS Working Papers 883, Bank for International Settlements.
    7. Banerjee, Ryan & Contreras, Juan & Mehrotra, Aaron & Zampolli, Fabrizio, 2024. "Inflation at risk in advanced and emerging market economies," Journal of International Money and Finance, Elsevier, vol. 142(C).
    8. Stefano Neri & Giuseppe Ferrero, 2017. "Monetary policy in a low interest rate environment," Questioni di Economia e Finanza (Occasional Papers) 392, Bank of Italy, Economic Research and International Relations Area.
    9. Stefano Neri & Stefano Siviero, 2019. "The non-standard monetary policy measures of the ECB: motivations, effectiveness and risks," Questioni di Economia e Finanza (Occasional Papers) 486, Bank of Italy, Economic Research and International Relations Area.
    10. Fabio Busetti & Michele Caivano & Davide Delle Monache, 2021. "Domestic and Global Determinants of Inflation: Evidence from Expectile Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 982-1001, August.
    11. J. David López-Salido & Francesca Loria, 2020. "Inflation at Risk," Finance and Economics Discussion Series 2020-013, Board of Governors of the Federal Reserve System (U.S.).
    12. S. Béreau & V. Faubert & K. Schmidt, 2018. "Explaining and Forecasting Euro Area Inflation: the Role of Domestic and Global Factors," Working papers 663, Banque de France.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    2. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    3. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    4. Paul Labonne, 2022. "Asymmetric Uncertainty: Nowcasting Using Skewness in Real-time Data," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-23, Economic Statistics Centre of Excellence (ESCoE).
    5. Diks, Cees & Fang, Hao, 2020. "Comparing density forecasts in a risk management context," International Journal of Forecasting, Elsevier, vol. 36(2), pages 531-551.
    6. Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2020. "The Efficiency Gap," Papers 2010.14146, arXiv.org, revised Sep 2022.
    7. Taylor, James W., 2022. "Forecasting Value at Risk and expected shortfall using a model with a dynamic omega ratio," Journal of Banking & Finance, Elsevier, vol. 140(C).
    8. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    9. Fabio Busetti & Michele Caivano & Davide Delle Monache, 2021. "Domestic and Global Determinants of Inflation: Evidence from Expectile Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 982-1001, August.
    10. Manzan, Sebastiano & Zerom, Dawit, 2013. "Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?," International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
    11. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    12. Leopoldo Catania & Alessandra Luati & Pierluigi Vallarino, 2021. "Economic vulnerability is state dependent," CREATES Research Papers 2021-09, Department of Economics and Business Economics, Aarhus University.
    13. Zongwu Cai & Ying Fang & Dingshi Tian, 2024. "CAViaR Model Selection Via Adaptive Lasso," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202403, University of Kansas, Department of Economics, revised Jan 2024.
    14. Storti, Giuseppe & Wang, Chao, 2022. "Nonparametric expected shortfall forecasting incorporating weighted quantiles," International Journal of Forecasting, Elsevier, vol. 38(1), pages 224-239.
    15. Anne Opschoor & André Lucas & István Barra & Dick van Dijk, 2021. "Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1066-1079, October.
    16. Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
    17. Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
    18. Catania, Leopoldo & Luati, Alessandra, 2023. "Semiparametric modeling of multiple quantiles," Journal of Econometrics, Elsevier, vol. 237(2).
    19. Giuseppe Storti & Chao Wang, 2021. "Modelling uncertainty in financial tail risk: a forecast combination and weighted quantile approach," Papers 2104.04918, arXiv.org, revised Jul 2021.
    20. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.

    More about this item

    Keywords

    quantile regression; Phillips curve; time-varying distribution;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_1027_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.