IDEAS home Printed from https://ideas.repec.org/p/bdi/wptemi/td_1027_15.html
   My bibliography  Save this paper

On the conditional distribution of euro area inflation forecast

Author

Listed:
  • Fabio Busetti

    (Bank of Italy)

  • Michele Caivano

    (Bank of Italy)

  • Lisa Rodano

    (Bank of Italy)

Abstract

The paper uses dynamic quantile regressions to estimate and forecast the conditional distribution of euro-area inflation. As in a Phillips curve relationship we assume that inflation quantiles depend on past inflation, the output gap, and other determinants, namely oil prices and the exchange rate. We find significant time variation in the shape of the distribution. Overall, the quantile regression approach describes the distribution of inflation better than a benchmark univariate trend-cycle model with stochastic volatility, which is known to perform very well in forecasting inflation. In an out-of-sample prediction exercise, the quantile regression approach provides forecasts of the conditional distribution of inflation that are superior, overall, to those produced by the benchmark model. Averaging the distribution forecasts of the different models improves robustness and in some cases results in the greatest accuracy of distributional forecasts.

Suggested Citation

  • Fabio Busetti & Michele Caivano & Lisa Rodano, 2015. "On the conditional distribution of euro area inflation forecast," Temi di discussione (Economic working papers) 1027, Bank of Italy, Economic Research and International Relations Area.
  • Handle: RePEc:bdi:wptemi:td_1027_15
    as

    Download full text from publisher

    File URL: http://www.bancaditalia.it/pubblicazioni/temi-discussione/2015/2015-1027/en_tema_1027.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, September.
    2. Mark Gertler & Jordi Gali & Richard Clarida, 1999. "The Science of Monetary Policy: A New Keynesian Perspective," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1661-1707, December.
    3. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
    4. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    5. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    6. Wolters Maik H. & Tillmann Peter, 2015. "The changing dynamics of US inflation persistence: a quantile regression approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 161-182, April.
    7. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    8. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR ‘Fan’ Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
    9. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    10. Mark Gertler & Jordi Gali & Richard Clarida, 1999. "The Science of Monetary Policy: A New Keynesian Perspective," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1661-1707, December.
    11. Andrea Stella & James H. Stock, 2012. "A state-dependent model for inflation forecasting," International Finance Discussion Papers 1062, Board of Governors of the Federal Reserve System (U.S.).
    12. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "Inflation and monetary policy in the twentieth century," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 27(Q I), pages 22-45.
    13. Wagner Piazza Gaglianone & Luiz Renato Lima, 2014. "Constructing Optimal Density Forecasts From Point Forecast Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 736-757, August.
    14. Marianna Riggi & Fabrizio Venditti, 2014. "Surprise! Euro area inflation has fallen," Questioni di Economia e Finanza (Occasional Papers) 237, Bank of Italy, Economic Research and International Relations Area.
    15. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    16. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
    17. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    18. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    19. De Rossi, Giuliano & Harvey, Andrew, 2009. "Quantiles, expectiles and splines," Journal of Econometrics, Elsevier, vol. 152(2), pages 179-185, October.
    20. Clive W. J. Granger & Yongil Jeon, 2011. "The Evolution of the Phillips Curve: A Modern Time Series Viewpoint," Economica, London School of Economics and Political Science, vol. 78(309), pages 51-66, January.
    21. Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
    22. Manzan, Sebastiano & Zerom, Dawit, 2013. "Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?," International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
    23. Claudia Miani & Stefano Siviero, 2010. "A non-parametric model-based approach to uncertainty and risk analysis of macroeconomic forecast," Temi di discussione (Economic working papers) 758, Bank of Italy, Economic Research and International Relations Area.
    24. Fabio Busetti & Andrew Harvey, 2010. "Tests of strict stationarity based on quantile indicators," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 435-450, November.
    25. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    26. Buchinsky, Moshe, 1995. "Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study," Journal of Econometrics, Elsevier, vol. 68(2), pages 303-338, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sirio Aramonte, 2022. "Inflation risk and the labor market: beneath the surface of a flat Phillips curve," BIS Working Papers 1054, Bank for International Settlements.
    2. Alex Tagliabracci, 2020. "Asymmetry in the conditional distribution of euro-area inflation," Temi di discussione (Economic working papers) 1270, Bank of Italy, Economic Research and International Relations Area.
    3. Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021. "The time-varying risk of Italian GDP," Economic Modelling, Elsevier, vol. 101(C).
    4. Banerjee, Ryan & Contreras, Juan & Mehrotra, Aaron & Zampolli, Fabrizio, 2024. "Inflation at risk in advanced and emerging market economies," Journal of International Money and Finance, Elsevier, vol. 142(C).
    5. Stefano Neri & Giuseppe Ferrero, 2017. "Monetary policy in a low interest rate environment," Questioni di Economia e Finanza (Occasional Papers) 392, Bank of Italy, Economic Research and International Relations Area.
    6. Fabio Busetti & Michele Caivano & Davide Delle Monache, 2021. "Domestic and Global Determinants of Inflation: Evidence from Expectile Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 982-1001, August.
    7. J. David López-Salido & Francesca Loria, 2020. "Inflation at Risk," Finance and Economics Discussion Series 2020-013, Board of Governors of the Federal Reserve System (U.S.).
    8. S. Béreau & V. Faubert & K. Schmidt, 2018. "Explaining and Forecasting Euro Area Inflation: the Role of Domestic and Global Factors," Working papers 663, Banque de France.
    9. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
    10. Stéphane Lhuissier & Aymeric Ortmans & Fabien Tripier, 2024. "The Risk of Inflation Dispersion in the Euro Area," Working papers 954, Banque de France.
    11. Ryan Niladri Banerjee & Juan Contreras & Aaron Mehrotra & Fabrizio Zampolli, 2020. "Inflation at risk in advanced and emerging economies," BIS Working Papers 883, Bank for International Settlements.
    12. Stefano Neri & Stefano Siviero, 2019. "The non-standard monetary policy measures of the ECB: motivations, effectiveness and risks," Questioni di Economia e Finanza (Occasional Papers) 486, Bank of Italy, Economic Research and International Relations Area.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    2. Paul Labonne, 2022. "Asymmetric Uncertainty: Nowcasting Using Skewness in Real-time Data," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-23, Economic Statistics Centre of Excellence (ESCoE).
    3. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    4. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    5. Fabio Busetti & Michele Caivano & Davide Delle Monache, 2021. "Domestic and Global Determinants of Inflation: Evidence from Expectile Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 982-1001, August.
    6. Manzan, Sebastiano & Zerom, Dawit, 2013. "Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?," International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
    7. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    8. Anne Opschoor & André Lucas & István Barra & Dick van Dijk, 2021. "Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1066-1079, October.
    9. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    10. Diks, Cees & Fang, Hao, 2020. "Comparing density forecasts in a risk management context," International Journal of Forecasting, Elsevier, vol. 36(2), pages 531-551.
    11. Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2020. "The Efficiency Gap," Papers 2010.14146, arXiv.org, revised Sep 2022.
    12. Taylor, James W., 2022. "Forecasting Value at Risk and expected shortfall using a model with a dynamic omega ratio," Journal of Banking & Finance, Elsevier, vol. 140(C).
    13. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
    14. Anne Opschoor & André Lucas, 2019. "Time-varying tail behavior for realized kernels," Tinbergen Institute Discussion Papers 19-051/IV, Tinbergen Institute.
    15. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
    16. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    17. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    18. Knüppel, Malte & Schultefrankenfeld, Guido, 2019. "Assessing the uncertainty in central banks’ inflation outlooks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1748-1769.
    19. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    20. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.

    More about this item

    Keywords

    quantile regression; Phillips curve; time-varying distribution;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_1027_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.