IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/0702.html
   My bibliography  Save this paper

Quantiles, Expectiles and Splines

Author

Listed:
  • DeRossi, G.
  • Harvey, A.

Abstract

A time-varying quantile can be fitted to a sequence of observations by formulating a time series model for the corresponding population quantile and iteratively applying a suitably modified state space signal extraction algorithm. It is shown that such time-varying quantiles satisfy the defining property of fixed quantiles in having the appropriate number of observations above and below. Expectiles are similar to quantiles except that they are defined by tail expectations. Like quantiles, time-varying expectiles can be estimated by a state space signal extraction algorithm and they satisfy properties that generalize the moment conditions associated with fixed expectiles. Time-varying quantiles and expectiles provide information on various aspects of a time series, such as dispersion and asymmetry, while estimates at the end of the series provide the basis for forecasting. Because the state space form can handle irregularly spaced observations, the proposed algorithms can be easily adapted to provide a viable means of computing spline-based non-parametric quantile and expectile regressions.

Suggested Citation

  • DeRossi, G. & Harvey, A., 2007. "Quantiles, Expectiles and Splines," Cambridge Working Papers in Economics 0702, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:0702
    Note: Ec
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe0660.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. DeRossi, G. & Harvey, A., 2006. "Time-Varying Quantiles," Cambridge Working Papers in Economics 0649, Faculty of Economics, University of Cambridge.
    2. Busettti, F. & Harvey, A., 2007. "Tests of time-invariance," Cambridge Working Papers in Economics 0701, Faculty of Economics, University of Cambridge.
    3. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    4. Bosch, Ronald J. & Ye, Yinyu & Woodworth, George G., 1995. "A convergent algorithm for quantile regression with smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 19(6), pages 613-630, June.
    5. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    6. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    7. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, August.
    8. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    9. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    10. Andrew Harvey & Siem Jan Koopman, 2000. "Signal extraction and the formulation of unobserved components models," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 84-107.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Asymmetric least squares; cubic splines; dispersion; non-parametric regression; quantile regression; signal extraction; state space smoother.;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:0702. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jake Dyer). General contact details of provider: http://www.econ.cam.ac.uk/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.