IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper

Time-Varying Quantiles

  • DeRossi, G.
  • Harvey, A.

A time-varying quantile can be fitted to a sequence of observations by formulating a time series model for the corresponding population quantile and iteratively applying a suitably modified state space signal extraction algorithm. Quantiles estimated in this way provide information on various aspects of a time series, including dispersion, asymmetry and, for financial applications, value at risk. Tests for the constancy of quantiles, and associated contrasts, are constructed using indicator variables; these tests have a similar form to stationarity tests and, under the null hypothesis, their asymptotic distributions belong to the Cramér von Mises family. Estimates of the quantiles at the end of the series provide the basis for forecasting. As such they offer an alternative to conditional quantile autoregressions and, at the same time, give some insight into their structure and potential drawbacks.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.econ.cam.ac.uk/research/repec/cam/pdf/cwpe0649.pdf
Download Restriction: no

Paper provided by Faculty of Economics, University of Cambridge in its series Cambridge Working Papers in Economics with number 0649.

as
in new window

Length: 42
Date of creation: Jul 2006
Date of revision:
Handle: RePEc:cam:camdae:0649
Note: Ec
Contact details of provider: Web page: http://www.econ.cam.ac.uk/index.htm

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Komunjer, Ivana, 2002. "Quasi-Maximum Likelihood Estimation for Conditional Quantiles," Working Papers 1139, California Institute of Technology, Division of the Humanities and Social Sciences.
  2. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
  3. Harvey, A.C. & Koopman, S.J.M., 1999. "Signal Extraction and the Formulation of Unobserved Components Models," Discussion Paper 1999-44, Tilburg University, Center for Economic Research.
  4. Donald W.K. Andrews, 1999. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Cowles Foundation Discussion Papers 1229, Cowles Foundation for Research in Economics, Yale University.
  5. Neil Shephard, 2005. "Stochastic volatility," Economics Series Working Papers 2005-W17, University of Oxford, Department of Economics.
  6. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
  7. Peter Christoffersen & Jinyong Hahn & Atsushi Inoue, 2001. "Testing and Comparing Value-at-Risk Measures," CIRANO Working Papers 2001s-03, CIRANO.
  8. de Jong, Robert M. & Amsler, Christine & Schmidt, Peter, 2007. "A robust version of the KPSS test based on indicators," Journal of Econometrics, Elsevier, vol. 137(2), pages 311-333, April.
  9. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
  10. Denis Kwiatkowski & Peter C.B. Phillips & Peter Schmidt, 1991. "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?," Cowles Foundation Discussion Papers 979, Cowles Foundation for Research in Economics, Yale University.
  11. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
  12. Bosch, Ronald J. & Ye, Yinyu & Woodworth, George G., 1995. "A convergent algorithm for quantile regression with smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 19(6), pages 613-630, June.
  13. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
  14. repec:cup:etheor:v:12:y:1996:i:5:p:793-813 is not listed on IDEAS
  15. Harvey, Andrew, 2006. "Forecasting with Unobserved Components Time Series Models," Handbook of Economic Forecasting, Elsevier.
  16. Len Umantsev & Victor Chernozhukov, 2001. "Conditional value-at-risk: Aspects of modeling and estimation," Empirical Economics, Springer, vol. 26(1), pages 271-292.
  17. Jared Bernstein & Andrew Harvey, 2000. "Measurement and Testing of Inequality from Time Series of Deciles with an Application to U.S. Wages," Econometric Society World Congress 2000 Contributed Papers 0861, Econometric Society.
  18. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-47, July.
  19. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275, June.
  20. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(05), pages 793-813, December.
  21. Linton, O. & Whang, Yoon-Jae, 2007. "The quantilogram: With an application to evaluating directional predictability," Journal of Econometrics, Elsevier, vol. 141(1), pages 250-282, November.
  22. James W. Taylor, 2005. "Generating Volatility Forecasts from Value at Risk Estimates," Management Science, INFORMS, vol. 51(5), pages 712-725, May.
  23. Harvey, Andrew & Streibel, Mariane, 1998. "Testing for a slowly changing level with special reference to stochastic volatility," Journal of Econometrics, Elsevier, vol. 87(1), pages 167-189, August.
  24. Jukka Nyblom & Andrew Harvey, 2001. "Testing against smooth stochastic trends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 415-429.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cam:camdae:0649. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jake Dyer)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.