IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v25y2008i1p54-69.html
   My bibliography  Save this article

Band spectral estimation for signal extraction

Author

Listed:
  • Proietti, Tommaso

Abstract

The paper evaluates the potential of band spectral estimation for extracting signals in economic time series. Two situations are considered. The first deals with trend extraction when the original data have been permanently altered by routine operations, such as prefiltering, temporal aggregation and disaggregation, and seasonal adjustment, which modify the high frequencies properties of economic time series. The second is when the measurement model is only partially specified, in that it aims at fitting the series in a particular frequency range, e.g. at interpreting the long run behaviour. These issues are illustrated with reference to a simple structural model, namely the random walk plus noise model.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Proietti, Tommaso, 2008. "Band spectral estimation for signal extraction," Economic Modelling, Elsevier, vol. 25(1), pages 54-69, January.
  • Handle: RePEc:eee:ecmode:v:25:y:2008:i:1:p:54-69
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264-9993(07)00060-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    2. Francis X. Diebold & Lee E. Ohanian & Jeremy Berkowitz, 1998. "Dynamic Equilibrium Economies: A Framework for Comparing Models and Data," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 433-451.
    3. Robinson, Peter M., 1977. "The construction and estimation of continuous time models and discrete approximations in econometrics," Journal of Econometrics, Elsevier, vol. 6(2), pages 173-197, September.
    4. Watson, Mark W, 1993. "Measures of Fit for Calibrated Models," Journal of Political Economy, University of Chicago Press, vol. 101(6), pages 1011-1041, December.
    5. Christiano, Lawrence J. & Vigfusson, Robert J., 2003. "Maximum likelihood in the frequency domain: the importance of time-to-plan," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 789-815, May.
    6. Dean Corbae & Sam Ouliaris & Peter C. B. Phillips, 2002. "Band Spectral Regression with Trending Data," Econometrica, Econometric Society, vol. 70(3), pages 1067-1109, May.
    7. Engle, Robert F, 1978. "Testing Price Equations for Stability across Spectral Frequency Bands," Econometrica, Econometric Society, vol. 46(4), pages 869-881, July.
    8. Andrew Harvey & Chia-Hui Chung, 2000. "Estimating the underlying change in unemployment in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(3), pages 303-309.
    9. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    10. D.S.G. Pollock, 2007. "Investigating Economic Trends And Cycles," Discussion Papers in Economics 07/17, Department of Economics, University of Leicester, revised Apr 2008.
    11. Tommaso Proietti, 2005. "Forecasting and signal extraction with misspecified models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 539-556.
    12. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    13. Engle, Robert F, 1974. "Band Spectrum Regression," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(1), pages 1-11, February.
    14. Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
    15. Jaeger, Albert, 1992. "Does Consumption Take a Random Walk? Some Evidence from Macroeconomic Forecasting Data," The Review of Economics and Statistics, MIT Press, vol. 74(4), pages 607-614, November.
    16. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    17. Andrew Harvey & Siem Jan Koopman, 2000. "Signal extraction and the formulation of unobserved components models," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 84-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Wendong & Sun, Jingwei, 2016. "Aggregation and long-memory: An analysis based on the discrete Fourier transform," Economic Modelling, Elsevier, vol. 53(C), pages 470-476.
    2. D.S.G. Pollock, 2010. "Oversampling of stochastic processes," Working Papers 44, Department of Applied Econometrics, Warsaw School of Economics.
    3. D.S.G. Pollock, 2017. "Stochastic processes of limited frequency and the effects of oversampling," Discussion Papers in Economics 17/03, Department of Economics, University of Leicester.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:25:y:2008:i:1:p:54-69. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.