IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v66y2025i4d10.1007_s00362-025-01720-y.html
   My bibliography  Save this article

Imitated student’s t distribution: a Bayesian approach

Author

Listed:
  • Łukasz Lenart

    (Krakow University of Economics)

  • Justyna Mokrzycka-Gajda

    (Krakow University of Economics)

Abstract

The objective of this article is to develop a new symmetric distribution capable of mimicking the Student’s t distribution with any precision controlled by a single tuning parameter. Despite the non-existence of higher-order moments of the Student’s t distribution, all moments of the proposed distribution do exist. Moreover, it remains subnormal at all times, regardless of how closely it approximates the t distribution. We strongly advocate for Bayesian inference with the proposed distribution, given the ease of identifying observations in the tails in a formal way using latent variables. Effective MCMC methods are attainable by a specific hierarchical representation of the proposed distribution. The simulation and empirical examples demonstrate the flexibility of the proposed distribution in capturing extreme observations.

Suggested Citation

  • Łukasz Lenart & Justyna Mokrzycka-Gajda, 2025. "Imitated student’s t distribution: a Bayesian approach," Statistical Papers, Springer, vol. 66(4), pages 1-44, June.
  • Handle: RePEc:spr:stpapr:v:66:y:2025:i:4:d:10.1007_s00362-025-01720-y
    DOI: 10.1007/s00362-025-01720-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-025-01720-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-025-01720-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 23-46.
    2. Anne E. Magurran & Peter A. Henderson, 2003. "Explaining the excess of rare species in natural species abundance distributions," Nature, Nature, vol. 422(6933), pages 714-716, April.
    3. Jimmy Reyes & Inmaculada Barranco-Chamorro & Héctor W. Gómez, 2020. "Generalized modified slash distribution with applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(8), pages 2025-2048, April.
    4. Jimmy Reyes & Yuri A. Iriarte, 2023. "A New Family of Modified Slash Distributions with Applications," Mathematics, MDPI, vol. 11(13), pages 1-15, July.
    5. William H. Rogers & John W. Tukey, 1972. "Understanding some long‐tailed symmetrical distributions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 26(3), pages 211-226, September.
    6. Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
    7. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2023. "Proper Scoring Rules for Evaluating Density Forecasts with Asymmetric Loss Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 482-496, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talha Arslan, 2021. "An α -Monotone Generalized Log-Moyal Distribution with Applications to Environmental Data," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    2. Jaime S. Castillo & Inmaculada Barranco-Chamorro & Osvaldo Venegas & Héctor W. Gómez, 2023. "Slash-Weighted Lindley Distribution: Properties, Inference, and Applications," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
    3. Lachos, Victor H. & Prates, Marcos O. & Dey, Dipak K., 2021. "Heckman selection-t model: Parameter estimation via the EM-algorithm," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    4. Aknouche, Abdelhakim & Demmouche, Nacer & Touche, Nassim, 2018. "Bayesian MCMC analysis of periodic asymmetric power GARCH models," MPRA Paper 91136, University Library of Munich, Germany.
    5. Manabu Asai & Michael McAleer, 2022. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 103-123, January.
    6. Łukasz Kwiatkowski, 2011. "Bayesian Analysis of a Regime Switching In-Mean Effect for the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 3(4), pages 187-219, December.
    7. Liu, Xiaochun & Luger, Richard, 2015. "Unfolded GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 186-217.
    8. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    9. Hoogerheide, Lennart & van Dijk, Herman K., 2010. "Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling," International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
    10. Guillermo Martínez-Flórez & Inmaculada Barranco-Chamorro & Héctor W. Gómez, 2021. "Flexible Log-Linear Birnbaum–Saunders Model," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    11. Lanne, Markku & Luoto, Jani, 2008. "Robustness of the risk-return relationship in the U.S. stock market," Finance Research Letters, Elsevier, vol. 5(2), pages 118-127, June.
    12. Hazan, Alon & Landsman, Zinoviy & E Makov, Udi, 2003. "Robustness via a mixture of exponential power distributions," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 111-121, February.
    13. Bickel, David R., 2002. "Robust estimators of the mode and skewness of continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 39(2), pages 153-163, April.
    14. Adämmer, Philipp & Prüser, Jan & Schüssler, Rainer A., 2025. "Forecasting macroeconomic tail risk in real time: Do textual data add value?," International Journal of Forecasting, Elsevier, vol. 41(1), pages 307-320.
    15. Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2011. "A Class of Adaptive EM-based Importance Sampling Algorithms for Efficient and Robust Posterior and Predictive Simulation," Tinbergen Institute Discussion Papers 11-004/4, Tinbergen Institute.
    16. Wago, Hajime, 2004. "Bayesian estimation of smooth transition GARCH model using Gibbs sampling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 63-78.
    17. Jimmy Reyes & Yuri A. Iriarte, 2023. "A New Family of Modified Slash Distributions with Applications," Mathematics, MDPI, vol. 11(13), pages 1-15, July.
    18. Tareq Sadeq & Michel Lubrano, 2018. "The Wall’s Impact in the Occupied West Bank: A Bayesian Approach to Poverty Dynamics Using Repeated Cross-Sections," Econometrics, MDPI, vol. 6(2), pages 1-24, May.
    19. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    20. Michel Lubrano, 2004. "Modélisation bayésienne non linéaire du taux d’intérêt de court terme américain : l’aide des outils non paramétriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 465-499.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:4:d:10.1007_s00362-025-01720-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.