IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0297180.html
   My bibliography  Save this article

Modelling the GDP of KSA using linear and non-linear NNAR and hybrid stochastic time series models

Author

Listed:
  • Abdullah M Almarashi
  • Muhammad Daniyal
  • Farrukh Jamal

Abstract

Background: Gross domestic product (GDP) serves as a crucial economic indicator for measuring a country’s economic growth, exhibiting both linear and non-linear trends. This study aims to analyze and propose an efficient and accurate time series approach for modeling and forecasting the GDP annual growth rate (%) of Saudi Arabia, a key financial indicator of the country. Methodology: Stochastic linear and non-linear time series modeling, along with hybrid approaches, are employed and their results are compared. Initially, conventional linear and nonlinear methods such as ARIMA, Exponential smoothing, TBATS, and NNAR are applied. Subsequently, hybrid models combining these individual time series approaches are utilized. Model diagnostics, including mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE), are employed as criteria for model selection to identify the best-performing model. Results: The findings demonstrated that the neural network autoregressive (NNAR) model, as a non-linear approach, outperformed all other models, exhibiting the lowest values of MAE, RMSE and MAPE. The NNAR(5,3) projected the GDP of 1.3% which is close to the projection of IMF benchmark (1.9) for the year 2023. Conclusion: The selected model can be employed by economists and policymakers to formulate appropriate policies and plans. This quantitative study provides policymakers with a basis for monitoring fluctuations in GDP growth from 2022 to 2029 and ensuring the sustained progression of GDP beyond 2029. Additionally, this study serves as a guide for researchers to test these approaches in different economic dynamics.

Suggested Citation

  • Abdullah M Almarashi & Muhammad Daniyal & Farrukh Jamal, 2024. "Modelling the GDP of KSA using linear and non-linear NNAR and hybrid stochastic time series models," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-16, February.
  • Handle: RePEc:plo:pone00:0297180
    DOI: 10.1371/journal.pone.0297180
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297180
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0297180&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0297180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James Mitchell & Gary Koop & Stuart McIntyre & Aubrey Poon, 2020. "Reconciled Estimates of Monthly GDP in the US," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-16, Economic Statistics Centre of Excellence (ESCoE).
    2. Tkacz, Greg, 2001. "Neural network forecasting of Canadian GDP growth," International Journal of Forecasting, Elsevier, vol. 17(1), pages 57-69.
    3. Doucoure, Boubacar & Agbossou, Kodjo & Cardenas, Alben, 2016. "Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data," Renewable Energy, Elsevier, vol. 92(C), pages 202-211.
    4. Faten Ben Bouheni & Hassan Obeid & Elena Margarint, 2022. "Nonperforming loan of European Islamic banks over the economic cycle," Annals of Operations Research, Springer, vol. 313(2), pages 773-808, June.
    5. Ilias Kostarakos & Stelios Kotsios, 2018. "Fiscal Policy Design in Greece in the Aftermath of the Crisis: An Algorithmic Approach," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 893-911, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantina Kopitsa & Ioannis G. Tsoulos & Vasileios Charilogis & Athanassios Stavrakoudis, 2024. "Predicting the Duration of Forest Fires Using Machine Learning Methods," Future Internet, MDPI, vol. 16(11), pages 1-19, October.
    2. García, Irene & Huo, Stella & Prado, Raquel & Bravo, Lelys, 2020. "Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements," Renewable Energy, Elsevier, vol. 161(C), pages 55-64.
    3. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    4. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    5. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    6. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
    7. Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
    8. Greg Tkacz & Carolyn A. Wilkins, 2006. "Linear and Threshold Forecasts of Output and Inflation with Stock and Housing Prices," Staff Working Papers 06-25, Bank of Canada.
    9. Fildes, Robert & Bretschneider, Stuart & Collopy, Fred & Lawrence, Michael & Stewart, Doug & Winklhofer, Heidi & Mentzer, John T. & Moon, Mark A., 2003. "Researching Sales Forecasting Practice: Commentaries and authors' response on "Conducting a Sales Forecasting Audit" by M.A. Moon, J.T. Mentzer & C.D. Smith," International Journal of Forecasting, Elsevier, vol. 19(1), pages 27-42.
    10. Ofori, Isaac Kwesi, 2021. "Catching The Drivers of Inclusive Growth in Sub-Saharan Africa: An Application of Machine Learning," EconStor Preprints 235482, ZBW - Leibniz Information Centre for Economics.
    11. Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
    12. Ibarra-Ramírez Raúl, 2021. "The Yield Curve as a Predictor of Economic Activity in Mexico: The Role of the Term Premium," Working Papers 2021-07, Banco de México.
    13. Emil Kraft & Dogan Keles & Wolf Fichtner, 2020. "Modeling of frequency containment reserve prices with econometrics and artificial intelligence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1179-1197, December.
    14. Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
    15. Ioannis A. Venetis & David A. Peel & Ivan Paya, 2004. "Asymmetry in the link between the yield spread and industrial production: threshold effects and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 373-384.
    16. David C. Wheelock & Mark E. Wohar, 2009. "Can the term spread predict output growth and recessions? a survey of the literature," Review, Federal Reserve Bank of St. Louis, vol. 91(Sep), pages 419-440.
    17. Rómulo Chumacero E., 2004. "Forecasting Chilean Industrial Production and Sales With Automated Procedures," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 7(3), pages 47-56, December.
    18. Kanazawa, Nobuyuki, 2020. "Radial basis functions neural networks for nonlinear time series analysis and time-varying effects of supply shocks," Journal of Macroeconomics, Elsevier, vol. 64(C).
    19. Sizhou Sun & Jingqi Fu & Ang Li, 2019. "A Compound Wind Power Forecasting Strategy Based on Clustering, Two-Stage Decomposition, Parameter Optimization, and Optimal Combination of Multiple Machine Learning Approaches," Energies, MDPI, vol. 12(18), pages 1-22, September.
    20. Goutam Dutta & Pankaj Jha & Arnab Kumar Laha & Neeraj Mohan, 2006. "Artificial Neural Network Models for Forecasting Stock Price Index in the Bombay Stock Exchange," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 5(3), pages 283-295, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0297180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.