IDEAS home Printed from https://ideas.repec.org/a/vrs/ecobus/v29y2016i1p12-26n2.html
   My bibliography  Save this article

Modelling Electricity Price Expectations in a Day-Ahead Market: A Case of Latvia

Author

Listed:
  • Bobinaite Viktorija
  • Zuters Jānis

    (University of Latvia Latvia)

Abstract

The paper aims at modelling the electricity generator’s expectations about price development in the Latvian day-ahead electricity market. Correlation and sensitivity analysis methods are used to identify the key determinants of electricity price expectations. A neural network approach is employed to model electricity price expectations. The research results demonstrate that electricity price expectations depend on the historical electricity prices. The price a day ago is the key determinant of price expectations and the importance of the lagged prices reduces as the time backwards lengthens. Nine models of electricity price expectations are prepared for different natural seasons and types of the day. The forecast accuracy of models varies from high to low, since errors are 7.02 % to 59.23 %. The forecasting power of models for weekends is reduced; therefore, additional determinants of electricity price expectations should be considered in the models and advanced input selection algorithms should be applied in future research. Electricity price expectations affect the generator’s loss through the production decisions, which are made considering the expected (forecasted) prices. The models allow making the production decision at a sufficient level of accuracy.

Suggested Citation

  • Bobinaite Viktorija & Zuters Jānis, 2016. "Modelling Electricity Price Expectations in a Day-Ahead Market: A Case of Latvia," Economics and Business, Sciendo, vol. 29(1), pages 12-26, August.
  • Handle: RePEc:vrs:ecobus:v:29:y:2016:i:1:p:12-26:n:2
    DOI: 10.1515/eb-2016-0017
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/eb-2016-0017
    Download Restriction: no

    File URL: https://libkey.io/10.1515/eb-2016-0017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2016. "Day-ahead electricity price forecasting via the application of artificial neural network based models," Applied Energy, Elsevier, vol. 172(C), pages 132-151.
    2. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    3. Marc Nerlove, 1958. "Adaptive Expectations and Cobweb Phenomena," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 72(2), pages 227-240.
    4. Pearce, Douglas K., 1975. "The measurement of price expectations," Journal of Behavioral Economics, Elsevier, vol. 4(1), pages 145-165.
    5. Bonacina, Monica & Gulli`, Francesco, 2007. "Electricity pricing under "carbon emissions trading": A dominant firm with competitive fringe model," Energy Policy, Elsevier, vol. 35(8), pages 4200-4220, August.
    6. J. Scott Armstrong & Kesten C. Green, 2005. "Demand Forecasting: Evidence-based Methods," Monash Econometrics and Business Statistics Working Papers 24/05, Monash University, Department of Econometrics and Business Statistics.
    7. Schlueter, Stephan, 2010. "A long-term/short-term model for daily electricity prices with dynamic volatility," Energy Economics, Elsevier, vol. 32(5), pages 1074-1081, September.
    8. Lyman Mlambo, 2012. "Adaptive And Rational Expectations Hypotheses: Reviewing The Critiques," The International Journal of Economic Behavior - IJEB, Faculty of Business and Administration, University of Bucharest, vol. 2(1), pages 3-15, December.
    9. Johnson, Michael D & Anderson, Eugene W & Fornell, Claes, 1995. "Rational and Adaptive Performance Expectations in a Customer Satisfaction Framework," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 21(4), pages 695-707, March.
    10. Binder, Carola Conces, 2016. "Estimation of historical inflation expectations," Explorations in Economic History, Elsevier, vol. 61(C), pages 1-31.
    11. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    2. Weron, Rafał & Zator, Michał, 2015. "A note on using the Hodrick–Prescott filter in electricity markets," Energy Economics, Elsevier, vol. 48(C), pages 1-6.
    3. Gerunov, Anton, 2014. "Критичен Преглед На Основните Подходи За Моделиране На Икономическите Очаквания [A Critical Review of Major Approaches for Modeling Economic Expectations]," MPRA Paper 68797, University Library of Munich, Germany.
    4. Bhatia, Kushagra & Mittal, Rajat & Varanasi, Jyothi & Tripathi, M.M., 2021. "An ensemble approach for electricity price forecasting in markets with renewable energy resources," Utilities Policy, Elsevier, vol. 70(C).
    5. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    6. Homburg, Stefan, 2017. "A Study in Monetary Macroeconomics," OUP Catalogue, Oxford University Press, number 9780198807537, Decembrie.
    7. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
    8. Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
    9. Roshan Sedhain & S. Shijin, 2023. "Expectations and Stock Market in Nepal," Vision, , vol. 27(5), pages 671-679, November.
    10. Saez, Yago & Mochon, Asuncion & Corona, Luis & Isasi, Pedro, 2019. "Integration in the European electricity market: A machine learning-based convergence analysis for the Central Western Europe region," Energy Policy, Elsevier, vol. 132(C), pages 549-566.
    11. Christian Giovanelli & Seppo Sierla & Ryutaro Ichise & Valeriy Vyatkin, 2018. "Exploiting Artificial Neural Networks for the Prediction of Ancillary Energy Market Prices," Energies, MDPI, vol. 11(7), pages 1-22, July.
    12. Sheybanivaziri, Samaneh & Le Dréau, Jérôme & Kazmi, Hussain, 2024. "Forecasting price spikes in day-ahead electricity markets: techniques, challenges, and the road ahead," Discussion Papers 2024/1, Norwegian School of Economics, Department of Business and Management Science.
    13. Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
    14. Halužan, Marko & Verbič, Miroslav & Zorić, Jelena, 2020. "Performance of alternative electricity price forecasting methods: Findings from the Greek and Hungarian power exchanges," Applied Energy, Elsevier, vol. 277(C).
    15. Janke, Leandro & McDonagh, Shane & Weinrich, Sören & Murphy, Jerry & Nilsson, Daniel & Hansson, Per-Anders & Nordberg, Åke, 2020. "Optimizing power-to-H2 participation in the Nord Pool electricity market: Effects of different bidding strategies on plant operation," Renewable Energy, Elsevier, vol. 156(C), pages 820-836.
    16. Katarzyna Maciejowska & Rafał Weron, 2015. "Forecasting of daily electricity prices with factor models: utilizing intra-day and inter-zone relationships," Computational Statistics, Springer, vol. 30(3), pages 805-819, September.
    17. Peng, Lu & Liu, Shan & Liu, Rui & Wang, Lin, 2018. "Effective long short-term memory with differential evolution algorithm for electricity price prediction," Energy, Elsevier, vol. 162(C), pages 1301-1314.
    18. Maciej K. Dudek, 2004. "Expectation Formation and Endogenous Fluctuations in Aggregate Demand," Econometric Society 2004 Latin American Meetings 103, Econometric Society.
    19. Victor Zarnowitz, 1984. "Business Cycles Analysis and Expectational Survey Data," NBER Working Papers 1378, National Bureau of Economic Research, Inc.
    20. Ping Jiang & Feng Liu & Yiliao Song, 2016. "A Hybrid Multi-Step Model for Forecasting Day-Ahead Electricity Price Based on Optimization, Fuzzy Logic and Model Selection," Energies, MDPI, vol. 9(8), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:ecobus:v:29:y:2016:i:1:p:12-26:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.