IDEAS home Printed from https://ideas.repec.org/p/cbo/wpaper/61186.html
   My bibliography  Save this paper

The Effects of Climate Change on GDP in the 21st Century: Working Paper 2025-02

Author

Listed:
  • Chad Shirley
  • William Swanson

Abstract

This working paper provides an estimate of a probability distribution of changes in gross domestic product (GDP) in the year 2100 resulting from changes in temperature. To estimate that distribution, we perform a meta-analysis of the literature on the effects of climate change on GDP and combine those effects with forecast global temperature distributions for the year 2100. We fit Gaussian distributions to the underlying data and numerically estimate the joint distribution of GDP and temperature. Using that distribution, we project that, on average, future temperature

Suggested Citation

  • Chad Shirley & William Swanson, 2025. "The Effects of Climate Change on GDP in the 21st Century: Working Paper 2025-02," Working Papers 61186, Congressional Budget Office.
  • Handle: RePEc:cbo:wpaper:61186
    as

    Download full text from publisher

    File URL: https://www.cbo.gov/system/files/2025-02/61186-Climate-GDP.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    2. john M. Antle, 2010. "Asymmetry, Partial Moments, and Production Risk," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(5), pages 1294-1309.
    3. Riccardo Colacito & Bridget Hoffmann & Toan Phan, 2019. "Temperature and Growth: A Panel Analysis of the United States," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(2-3), pages 313-368, March.
    4. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    5. Roberto Roson & Martina Sartori, 2016. "Estimation of Climate Change Damage Functions for 140 Regions in the GTAP 9 Database," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 78-115, December.
    6. Matthew E. Kahn, 2016. "The Climate Change Adaptation Literature," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 166-178.
    7. Joshua D. Woodard & Bruce J. Sherrick, 2011. "Estimation of Mixture Models using Cross-Validation Optimization: Implications for Crop Yield Distribution Modeling," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(4), pages 968-982.
    8. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    9. Tor N. Tolhurst & Alan P. Ker, 2015. "On Technological Change in Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 137-158.
    10. Antle, John M, 1983. "Testing the Stochastic Structure of Production: A Flexible Moment-based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(3), pages 192-201, July.
    11. Jesse Tack & Keith Coble & Barry Barnett, 2018. "Warming temperatures will likely induce higher premium rates and government outlays for the U.S. crop insurance program," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 635-647, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesse Tack & Keith Coble & Barry Barnett, 2018. "Warming temperatures will likely induce higher premium rates and government outlays for the U.S. crop insurance program," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 635-647, September.
    2. A Ford Ramsey, 2020. "Probability Distributions of Crop Yields: A Bayesian Spatial Quantile Regression Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 220-239, January.
    3. Karla Hernández & Carlos Madeira, 2021. "The impact of climate change on economic output in Chile: past and future," Working Papers Central Bank of Chile 933, Central Bank of Chile.
    4. Du, Xiaodong & Dong, Fengxia, 2024. "Climate Change and Dynamics of Crop Yield Distribution," 2024 Annual Meeting, July 28-30, New Orleans, LA 343786, Agricultural and Applied Economics Association.
    5. Christopher N. Boyer & B. Wade Brorsen & Emmanuel Tumusiime, 2015. "Modeling skewness with the linear stochastic plateau model to determine optimal nitrogen rates," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 1-10, January.
    6. Zheng Li & Roderick M. Rejesus & Xiaoyong Zheng, 2021. "Nonparametric Estimation and Inference of Production Risk," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1857-1877, October.
    7. Charlotte Fabri & Sam Vermeulen & Steven Van Passel & Sergei Schaub, 2024. "Crop diversification and the effect of weather shocks on Italian farmers' income and income risk," Journal of Agricultural Economics, Wiley Blackwell, vol. 75(3), pages 955-980, September.
    8. Zhang, Hongliang & Antle, John, 2016. "Assessing Climate Vulnerability of Agricultural Systems Using High-order moments: A Case Study in the U.S. Pacific Northwest," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236233, Agricultural and Applied Economics Association.
    9. Jesse Tack & David Ubilava, 2013. "The effect of El Niño Southern Oscillation on U.S. corn production and downside risk," Climatic Change, Springer, vol. 121(4), pages 689-700, December.
    10. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    11. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).
    12. Nguyen, Ha Minh, 2024. "Beyond the annual averages: Impact of seasonal temperature on employment growth in US counties," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    13. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    14. Kamiar Mohaddes & Ryan N C Ng & M Hashem Pesaran & Mehdi Raissi & Jui-Chung Yang, 2023. "Climate change and economic activity: evidence from US states," Oxford Open Economics, Oxford University Press, vol. 2, pages 28-46.
    15. Hongliang Zhang & John M. Antle, 2018. "Weather, Climate and Production Risk," IRENE Working Papers 18-01, IRENE Institute of Economic Research.
    16. Tol, Richard S.J., 2024. "A meta-analysis of the total economic impact of climate change," Energy Policy, Elsevier, vol. 185(C).
    17. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    18. Felipe Beltrán & Luigi Durand & Mario González-Frugone & Javier Moreno, 2023. "A Preliminary Assessment of the Economic Effects of Climate Change in Chile," Working Papers Central Bank of Chile 997, Central Bank of Chile.
    19. Picchio, Matteo & van Ours, Jan C., 2024. "The impact of high temperatures on performance in work-related activities," Labour Economics, Elsevier, vol. 87(C).
    20. Meierrieks, Daniel & Stadelmann, David, 2024. "Is temperature adversely related to economic development? Evidence on the short-run and the long-run links from sub-national data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 136, pages 1-18.

    More about this item

    JEL classification:

    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbo:wpaper:61186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cbogvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.