IDEAS home Printed from
   My bibliography  Save this paper

Incorporating Short Data into Large Mixed-Frequency VARs for Regional Nowcasting


  • Gary Koop

    (Department of Economics, University of Strathclyde)

  • Stuart McIntyre

    (Department of Economics, University of Strathclyde)

  • James Mitchell

    (Federal Reserve Bank of Cleveland; Economic Statistics Centre of Excellence)

  • Aubrey Poon

    (Orebro University; Economic Statistics Centre of Excellence)

  • Ping Wu

    (Department of Economics, University of Strathclyde)


Interest in regional economic issues coupled with advances in administrative data is driving the creation of new regional economic data. Many of these data series could be useful for nowcasting regional economic activity, but they suffer from a short (albeit constantly expanding) time series which makes incorporating them into nowcasting models problematic. Regional nowcasting is already challenging because the release delay on regional data tends to be greater than that at the national level, and “short†data imply a “ragged edge†at both the beginning and the end of regional data sets, which adds a further complication. In this paper, via an application to the UK, we develop methods to include a wide range of short data into a regional mixed-frequency VAR model. These short data include hitherto unexploited regional VAT turnover data. We address the problem of the ragged edge at both the beginning and end of our sample by estimating regional factors using different missing data algorithms that we then incorporate into our mixed-frequency VAR model. We find that nowcasts of regional output growth are generally improved when we condition them on the factors, but only when the regional nowcasts are produced before the national (UK-wide) output growth data are published.

Suggested Citation

  • Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon & Ping Wu, 2023. "Incorporating Short Data into Large Mixed-Frequency VARs for Regional Nowcasting," Working Papers 2311, University of Strathclyde Business School, Department of Economics.
  • Handle: RePEc:str:wpaper:2311

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2020. "Computationally efficient inference in large Bayesian mixed frequency VARs," Economics Letters, Elsevier, vol. 191(C).
    2. Paul Labonne & Martin Weale, 2020. "Temporal disaggregation of overlapping noisy quarterly data: estimation of monthly output from UK value‐added tax data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1211-1230, June.
    3. Joshua C. C. Chan, 2022. "Asymmetric conjugate priors for large Bayesian VARs," Quantitative Economics, Econometric Society, vol. 13(3), pages 1145-1169, July.
    4. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
    5. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Josh Martin & Rebecca Riley, 2023. "Productivity measurement - Reassessing the production function from micro to macro," Working Papers 033, The Productivity Institute.
    2. Luca Barbaglia & Lorenzo Frattarolo & Niko Hauzenberger & Dominik Hirschbuehl & Florian Huber & Luca Onorante & Michael Pfarrhofer & Luca Tiozzo Pezzoli, 2024. "Nowcasting economic activity in European regions using a mixed-frequency dynamic factor model," Papers 2401.10054,

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273,, revised Jan 2022.
    2. Luke Hartigan & Michelle Wright, 2021. "Financial Conditions and Downside Risk to Economic Activity in Australia," RBA Research Discussion Papers rdp2021-03, Reserve Bank of Australia.
    3. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    4. Jin, Sainan & Miao, Ke & Su, Liangjun, 2021. "On factor models with random missing: EM estimation, inference, and cross validation," Journal of Econometrics, Elsevier, vol. 222(1), pages 745-777.
    5. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
    6. Luke Hartigan & Michelle Wright, 2023. "Monitoring Financial Conditions and Downside Risk to Economic Activity in Australia," The Economic Record, The Economic Society of Australia, vol. 99(325), pages 253-287, June.
    7. Karen Miranda & Pilar Poncela & Esther Ruiz, 2022. "Dynamic factor models: Does the specification matter?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 397-428, May.
    8. Asger Lunde & Miha Torkar, 2020. "Including news data in forecasting macro economic performance of China," Computational Management Science, Springer, vol. 17(4), pages 585-611, December.
    9. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821,, revised Feb 2022.
    10. Giovanni Ballarin & Petros Dellaportas & Lyudmila Grigoryeva & Marcel Hirt & Sophie van Huellen & Juan-Pablo Ortega, 2022. "Reservoir Computing for Macroeconomic Forecasting with Mixed Frequency Data," Papers 2211.00363,, revised Jan 2024.
    11. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    12. Florian Eckert & Nina Mühlebach, 2021. "Global and Local Components of Output Gaps," KOF Working papers 21-497, KOF Swiss Economic Institute, ETH Zurich.
    13. Lippi, Marco & Deistler, Manfred & Anderson, Brian, 2023. "High-Dimensional Dynamic Factor Models: A Selective Survey and Lines of Future Research," Econometrics and Statistics, Elsevier, vol. 26(C), pages 3-16.
    14. Fosten, Jack, 2019. "CO2 emissions and economic activity: A short-to-medium run perspective," Energy Economics, Elsevier, vol. 83(C), pages 415-429.
    15. James T. E. Chapman & Ajit Desai, 2022. "Macroeconomic Predictions using Payments Data and Machine Learning," Papers 2209.00948,
    16. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    17. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    18. Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777,, revised Dec 2023.
    19. Libero Monteforte & Valentina Raponi, 2019. "Short‐term forecasts of economic activity: Are fortnightly factors useful?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 207-221, April.
    20. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.

    More about this item


    Regional data; Mixed-frequency data; Missing data; Nowcasting; Factors; Bayesian methods; Real-time data; Vector autoregressions;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:str:wpaper:2311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirsty Hall (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.