IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1803.06738.html
   My bibliography  Save this paper

Large-Scale Dynamic Predictive Regressions

Author

Listed:
  • Daniele Bianchi
  • Kenichiro McAlinn

Abstract

We develop a novel "decouple-recouple" dynamic predictive strategy and contribute to the literature on forecasting and economic decision making in a data-rich environment. Under this framework, clusters of predictors generate different latent states in the form of predictive densities that are later synthesized within an implied time-varying latent factor model. As a result, the latent inter-dependencies across predictive densities and biases are sequentially learned and corrected. Unlike sparse modeling and variable selection procedures, we do not assume a priori that there is a given subset of active predictors, which characterize the predictive density of a quantity of interest. We test our procedure by investigating the predictive content of a large set of financial ratios and macroeconomic variables on both the equity premium across different industries and the inflation rate in the U.S., two contexts of topical interest in finance and macroeconomics. We find that our predictive synthesis framework generates both statistically and economically significant out-of-sample benefits while maintaining interpretability of the forecasting variables. In addition, the main empirical results highlight that our proposed framework outperforms both LASSO-type shrinkage regressions, factor based dimension reduction, sequential variable selection, and equal-weighted linear pooling methodologies.

Suggested Citation

  • Daniele Bianchi & Kenichiro McAlinn, 2018. "Large-Scale Dynamic Predictive Regressions," Papers 1803.06738, arXiv.org.
  • Handle: RePEc:arx:papers:1803.06738
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1803.06738
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Kapetanios, G. & Mitchell, J. & Price, S. & Fawcett, N., 2015. "Generalised density forecast combinations," Journal of Econometrics, Elsevier, vol. 188(1), pages 150-165.
    4. Doron Avramov, 2004. "Stock Return Predictability and Asset Pricing Models," Review of Financial Studies, Society for Financial Studies, vol. 17(3), pages 699-738.
    5. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    6. Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E, 2017. "Economic Predictions with Big Data: The Illusion Of Sparsity," CEPR Discussion Papers 12256, C.E.P.R. Discussion Papers.
    7. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
    8. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
    9. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    10. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    11. repec:oup:jfinec:v:16:y:2018:i:1:p:34-62. is not listed on IDEAS
    12. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    13. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    14. Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
    15. JULES H. Van BINSBERGEN & RALPH S. J. KOIJEN, 2010. "Predictive Regressions: A Present‐Value Approach," Journal of Finance, American Finance Association, vol. 65(4), pages 1439-1471, August.
    16. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014. "Forecasting stock returns under economic constraints," Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
    17. Adrian, Tobias & Franzoni, Francesco, 2009. "Learning about beta: Time-varying factor loadings, expected returns, and the conditional CAPM," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 537-556, September.
    18. Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2018. "Dissecting the 2007–2009 Real Estate Market Bust: Systematic Pricing Correction or Just a Housing Fad?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 16(1), pages 34-62.
    19. Lewellen, Jonathan, 2004. "Predicting returns with financial ratios," Journal of Financial Economics, Elsevier, vol. 74(2), pages 209-235, November.
    20. Ľuboš Pástor & Robert F. Stambaugh, 2009. "Predictive Systems: Living with Imperfect Predictors," Journal of Finance, American Finance Association, vol. 64(4), pages 1583-1628, August.
    21. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    22. Sebastiano Manzan, 2015. "Forecasting the Distribution of Economic Variables in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 144-164, January.
    23. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    24. Ľuboš Pástor & Robert F. Stambaugh, 2012. "Are Stocks Really Less Volatile in the Long Run?," Journal of Finance, American Finance Association, vol. 67(2), pages 431-478, April.
    25. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    26. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2017. "Dissecting Characteristics Nonparametrically," NBER Working Papers 23227, National Bureau of Economic Research, Inc.
    27. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2009. "On the evolution of the monetary policy transmission mechanism," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 997-1017, April.
    28. Francis X. Diebold & Minchul Shin, 2017. "Beating the Simple Average: Egalitarian LASSO for Combining Economic Forecasts," PIER Working Paper Archive 17-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 20 Aug 2017.
    29. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    30. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    31. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    32. repec:taf:jnlbes:v:35:y:2017:i:1:p:110-129 is not listed on IDEAS
    33. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    34. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    35. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    36. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
    37. Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2017. "Macroeconomic Factors Strike Back: A Bayesian Change-Point Model of Time-Varying Risk Exposures and Premia in the U.S. Cross-Section," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 110-129, January.
    38. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    39. Nardari, Federico & Scruggs, John T., 2007. "Bayesian Analysis of Linear Factor Models with Latent Factors, Multivariate Stochastic Volatility, and APT Pricing Restrictions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(04), pages 857-891, December.
    40. Jostova, Gergana & Philipov, Alexander, 2005. "Bayesian Analysis of Stochastic Betas," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(04), pages 747-778, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.06738. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.