IDEAS home Printed from https://ideas.repec.org/a/cup/jfinqa/v42y2007i04p857-891_00.html
   My bibliography  Save this article

Bayesian Analysis of Linear Factor Models with Latent Factors, Multivariate Stochastic Volatility, and APT Pricing Restrictions

Author

Listed:
  • Nardari, Federico
  • Scruggs, John T.

Abstract

We analyze a new class of linear factor models in which the factors are latent and the covariance matrix of excess returns follows a multivariate stochastic volatility process. We evaluate cross-sectional restrictions suggested by the arbitrage pricing theory (APT), compare competing stochastic volatility specifications for the covariance matrix, and test for the number of factors. We also examine whether return predictability can be attributed to time-varying factor risk premia. Analysis of these models is feasible due to recent advances in Bayesian Markov chain Monte Carlo (MCMC) methods. We find that three latent factors with multivariate stochastic volatility best explain excess returns for a sample of 10 size decile portfolios. The data strongly favor models constrained by APT pricing restrictions over otherwise identical unconstrained models.

Suggested Citation

  • Nardari, Federico & Scruggs, John T., 2007. "Bayesian Analysis of Linear Factor Models with Latent Factors, Multivariate Stochastic Volatility, and APT Pricing Restrictions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(04), pages 857-891, December.
  • Handle: RePEc:cup:jfinqa:v:42:y:2007:i:04:p:857-891_00
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0022109000003422
    File Function: link to article abstract page
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2013. "Dissecting the 2007-2009 real estate market bust: systematic pricing correction or just a housing fad?," Working Paper 2013/22, Norges Bank.
    2. Daniele Bianchi & Kenichiro McAlinn, 2018. "Large-Scale Dynamic Predictive Regressions," Papers 1803.06738, arXiv.org.
    3. Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2017. "Macroeconomic Factors Strike Back: A Bayesian Change-Point Model of Time-Varying Risk Exposures and Premia in the U.S. Cross-Section," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 110-129, January.
    4. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Fast computation of the deviance information criterion for latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 847-859.
    5. repec:oup:jfinec:v:16:y:2018:i:1:p:34-62. is not listed on IDEAS
    6. Hsieh, Ping-Hung & Yang, J. Jimmy, 2009. "A censored stochastic volatility approach to the estimation of price limit moves," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 337-351, March.
    7. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    8. Malefaki, Valia, 2015. "On Flexible Linear Factor Stochastic Volatility Models," MPRA Paper 62216, University Library of Munich, Germany.
    9. repec:bla:jecrev:v:68:y:2017:i:1:p:63-94 is not listed on IDEAS
    10. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    11. Weber, Enzo, 2013. "Decomposing U.S. Stock Market Comovement into spillovers and common factors," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 106-118.
    12. Humberto Valencia Herrera, 2011. "Value at Risk and Return from the Use of Bayesian Methods for Stress Testing in a World Asset Allocation and the 2008-2009 Crisis," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 33-49.
    13. Doron Avramov & Guofu Zhou, 2010. "Bayesian Portfolio Analysis," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 25-47, December.
    14. Ouysse, Rachida & Kohn, Robert, 2010. "Bayesian variable selection and model averaging in the arbitrage pricing theory model," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3249-3268, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:jfinqa:v:42:y:2007:i:04:p:857-891_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_JFQ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.