IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.14078.html
   My bibliography  Save this paper

Machine Learning-Based Estimation of Monthly GDP

Author

Listed:
  • Yonggeun Jung

Abstract

This paper proposes a scalable framework to estimate monthly GDP using machine learning methods. We apply Multi-Layer Perceptron (MLP), Long Short-Term Memory networks (LSTM), Extreme Gradient Boosting (XGBoost), and Elastic Net regression to map monthly indicators to quarterly GDP growth, and reconcile the outputs with actual aggregates. Using data from China, Germany, the UK, and the US, our method delivers robust performance across varied data environments. Benchmark comparisons with prior US studies and UK official statistics validate its accuracy. The approach offers a flexible and data-driven tool for high-frequency macroeconomic monitoring and policy analysis.

Suggested Citation

  • Yonggeun Jung, 2025. "Machine Learning-Based Estimation of Monthly GDP," Papers 2506.14078, arXiv.org.
  • Handle: RePEc:arx:papers:2506.14078
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.14078
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.14078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.