Benchmarking econometric and machine learning methodologies in nowcasting GDP
Author
Abstract
Suggested Citation
DOI: 10.1007/s00181-023-02515-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Carriero, Andrea & Galvão, Ana Beatriz & Kapetanios, George, 2019. "A comprehensive evaluation of macroeconomic forecasting methods," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1226-1239.
- Banbura, Marta & Rünstler, Gerhard, 2011.
"A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
- Bańbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346.
- Rünstler, Gerhard & Bańbura, Marta, 2007. "A look into the factor model black box: publication lags and the role of hard and soft data in forecasting GDP," Working Paper Series 751, European Central Bank.
- Venus Khim-Sen Liew, 2004. "Which Lag Length Selection Criteria Should We Employ?," Economics Bulletin, AccessEcon, vol. 3(33), pages 1-9.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022.
"Machine Learning Time Series Regressions With an Application to Nowcasting,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2020. "Machine Learning Time Series Regressions with an Application to Nowcasting," Papers 2005.14057, arXiv.org, revised Dec 2020.
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Reprints LFIN 2021010, Université catholique de Louvain, Louvain Finance (LFIN).
- Babii, Andrii & Ghysels, Eric & Striaukas, Jonas, 2021. "Machine Learning Time Series Regressions With an Application to Nowcasting," LIDAM Discussion Papers LFIN 2021004, Université catholique de Louvain, Louvain Finance (LFIN).
- Eickmeier, Sandra & Ng, Tim, 2011.
"Forecasting national activity using lots of international predictors: An application to New Zealand,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
- Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511.
- Eickmeier, Sandra & Ng, Tim, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Discussion Paper Series 1: Economic Studies 2009,11, Deutsche Bundesbank.
- Sandra Eickmeier & Tim Ng, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/04, Reserve Bank of New Zealand.
- Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
- Tony Chernis & Rodrigo Sekkel, 2017.
"A dynamic factor model for nowcasting Canadian GDP growth,"
Empirical Economics, Springer, vol. 53(1), pages 217-234, August.
- Tony Chernis & Rodrigo Sekkel, 2017. "A Dynamic Factor Model for Nowcasting Canadian GDP Growth," Staff Working Papers 17-2, Bank of Canada.
- Giannone, Domenico & Reichlin, Lucrezia & Simonelli, Saverio, 2009.
"Nowcasting Euro Area Economic Activity in Real Time: The Role of Confidence Indicators,"
National Institute Economic Review, National Institute of Economic and Social Research, vol. 210, pages 90-97, October.
- Domenico Giannone & Lucrezia Reichlin & Saverio Simonelli, 2009. "Nowcasting Euro Area Economic Activity In Real Time: The Role Of Confidence Indicators," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210(1), pages 90-97, October.
- Domenico Giannone & Lucrezia Reichlin & Saverio Simonelli, 2009. "Nowcasting Euro Area Economic Activity in Real-Time: The Role of Confidence Indicators," CSEF Working Papers 240, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
- Domenico Giannone & Lucrezia Reichlin & Saverio Simonelli, 2009. "Nowcasting Euro Area Economic Activity in Real-Time: The Role of Confidence Indicator," Working Papers ECARES 2009_021, ULB -- Universite Libre de Bruxelles.
- Frank Schorfheide & Dongho Song, 2015.
"Real-Time Forecasting With a Mixed-Frequency VAR,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
- Frank Schorfheide & Dongho Song, 2012. "Real-time forecasting with a mixed-frequency VAR," Working Papers 701, Federal Reserve Bank of Minneapolis.
- Frank Schorfheide & Dongho Song, 2013. "Real-Time Forecasting with a Mixed-Frequency VAR," NBER Working Papers 19712, National Bureau of Economic Research, Inc.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542, April.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," Economics Working Papers ECO2009/32, European University Institute.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
- Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021.
"Nowcasting GDP using machine-learning algorithms: A real-time assessment,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2019. "Nowcasting New Zealand GDP using machine learning algorithms," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2018. "Nowcasting New Zealand GDP using machine learning algorithms," CAMA Working Papers 2018-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
- Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008.
"Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?,"
Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
- Reichlin, Lucrezia & Giannone, Domenico & De Mol, Christine, 2006. "Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components?," CEPR Discussion Papers 5829, C.E.P.R. Discussion Papers.
- De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank.
- Giannone, Domenico & Reichlin, Lucrezia & De Mol, Christine, 2006. "Forecasting using a large number of predictors: Is Bayesian regression a valid alternative to principal components?," Working Paper Series 700, European Central Bank.
- Singh, Rama Krishna & Prajneshu, 2008. "Artificial Neural Network Methodology for Modelling and Forecasting Maize Crop Yield," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 21(01).
- Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
- Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021.
"Nowcasting GDP using machine-learning algorithms: A real-time assessment,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2019. "Nowcasting GDP using machine learning algorithms: A real-time assessment," Reserve Bank of New Zealand Discussion Paper Series DP2019/03, Reserve Bank of New Zealand.
- James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Chernis, Tony & Cheung, Calista & Velasco, Gabriella, 2020.
"A three-frequency dynamic factor model for nowcasting Canadian provincial GDP growth,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 851-872.
- Tony Chernis & Calista Cheung & Gabriella Velasco, 2017. "A Three-Frequency Dynamic Factor Model for Nowcasting Canadian Provincial GDP Growth," Discussion Papers 17-8, Bank of Canada.
- Loermann, Julius & Maas, Benedikt, 2019. "Nowcasting US GDP with artificial neural networks," MPRA Paper 95459, University Library of Munich, Germany.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005.
"Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases,"
Finance and Economics Discussion Series
2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 633, European Central Bank.
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
- Jansen, W. Jos & Jin, Xiaowen & de Winter, Jasper M., 2016.
"Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 411-436.
- Jos Jansen, W. & Jin, Xiaowen & Winter, Jasper M. de, 2016. "Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts," Munich Reprints in Economics 43488, University of Munich, Department of Economics.
- Barış Soybilgen & Ege Yazgan, 2021. "Nowcasting US GDP Using Tree-Based Ensemble Models and Dynamic Factors," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 387-417, January.
- Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Elizaveta Volgina, 2025. "Forecasting Inflation Using News Indices," Russian Journal of Money and Finance, Bank of Russia, vol. 84(1), pages 26-59, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniel Hopp, 2022. "Benchmarking Econometric and Machine Learning Methodologies in Nowcasting," Papers 2205.03318, arXiv.org.
- Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024.
"Lessons from nowcasting GDP across the world,"
Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217,
Edward Elgar Publishing.
- Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2023. "Lessons from Nowcasting GDP across the World," International Finance Discussion Papers 1385, Board of Governors of the Federal Reserve System (U.S.).
- Dennis Kant & Andreas Pick & Jasper de Winter, 2025. "Nowcasting GDP using machine learning methods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 109(1), pages 1-24, March.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Stavros Degiannakis, 2023.
"The D-model for GDP nowcasting,"
Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.
- Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Working Papers 317, Bank of Greece.
- Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
- Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
- Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013.
"Now-Casting and the Real-Time Data Flow,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237,
Elsevier.
- Reichlin, Lucrezia & Giannone, Domenico & Modugno, Michele & Banbura, Marta, 2012. "Now-casting and the real-time data flow," CEPR Discussion Papers 9112, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta & Modugno, Michele, 2013. "Now-casting and the real-time data flow," Working Paper Series 1564, European Central Bank.
- Martha Banbura & Domenico Giannone & Michèle Modugno & Lucrezia Reichlin, 2012. "Now-Casting and the Real-Time Data Flow," Working Papers ECARES ECARES 2012-026, ULB -- Universite Libre de Bruxelles.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022.
"Nowcasting with large Bayesian vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2020. "Nowcasting with large Bayesian vector autoregressions," Working Paper Series 2453, European Central Bank.
- Lenza, Michele & Cimadomo, Jacopo & Giannone, Domenico & Monti, Francesca & Sokol, Andrej, 2021. "Nowcasting with Large Bayesian Vector Autoregressions," CEPR Discussion Papers 15854, C.E.P.R. Discussion Papers.
- Cascaldi-Garcia, Danilo & Ferreira, Thiago R.T. & Giannone, Domenico & Modugno, Michele, 2024.
"Back to the present: Learning about the euro area through a now-casting model,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 661-686.
- Danilo Cascaldi-Garcia & Thiago Revil T. Ferreira & Domenico Giannone & Michele Modugno, 2021. "Back to the Present: Learning about the Euro Area through a Now-casting Model," International Finance Discussion Papers 1313, Board of Governors of the Federal Reserve System (U.S.).
- Rusnák, Marek, 2016.
"Nowcasting Czech GDP in real time,"
Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
- Marek Rusnak, 2013. "Nowcasting Czech GDP in Real Time," Working Papers 2013/06, Czech National Bank.
- Daniel Hopp, 2021. "Economic Nowcasting with Long Short-Term Memory Artificial Neural Networks (LSTM)," Papers 2106.08901, arXiv.org.
- Hopp Daniel, 2022. "Economic Nowcasting with Long Short-Term Memory Artificial Neural Networks (LSTM)," Journal of Official Statistics, Sciendo, vol. 38(3), pages 847-873, September.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Economics Working Papers
ECO2013/02, European University Institute.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, May.
- James Chapman & Ajit Desai, .
"Using payments data to nowcast macroeconomic variables during the onset of Covid-19,"
Journal of Financial Market Infrastructures, Journal of Financial Market Infrastructures.
- James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
- Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018.
"Macroeconomic Nowcasting and Forecasting with Big Data,"
Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
- Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2017. "Macroeconomic nowcasting and forecasting with big data," Staff Reports 830, Federal Reserve Bank of New York.
- Giannone, Domenico & Tambalotti, Andrea & Sbordone, Argia & Bok, Brandyn & Caratelli, Daniele, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," CEPR Discussion Papers 12589, C.E.P.R. Discussion Papers.
- Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021.
"Nowcasting GDP using machine-learning algorithms: A real-time assessment,"
International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2019. "Nowcasting New Zealand GDP using machine learning algorithms," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
- Adam Richardson & Thomas van Florenstein Mulder & Tugrul Vehbi, 2018. "Nowcasting New Zealand GDP using machine learning algorithms," CAMA Working Papers 2018-47, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Christian Glocker & Philipp Wegmueller, 2020.
"Business cycle dating and forecasting with real-time Swiss GDP data,"
Empirical Economics, Springer, vol. 58(1), pages 73-105, January.
- Christian Glocker & Philipp Wegmüller, 2017. "Business Cycle Dating and Forecasting with Real-time Swiss GDP Data," WIFO Working Papers 542, WIFO.
More about this item
Keywords
Macroeconomic forecasting; Machine learning; Neural networks; Vector autoregression models; Econometric models; GDP; Bayesian methods; ARIMA models;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:66:y:2024:i:5:d:10.1007_s00181-023-02515-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.