Nowcasting U.S. state-level CO2 emissions and energy consumption
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2023.10.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kakuho Furukawa & Ryohei Hisano & Yukio Minoura & Tomoyuki Yagi, 2022. "A Nowcasting Model of Industrial Production using Alternative Data and Machine Learning Approaches," Bank of Japan Working Paper Series 22-E-16, Bank of Japan.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- West, Kenneth D, 1996.
"Asymptotic Inference about Predictive Ability,"
Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
- West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
- Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, University Library of Munich, Germany.
- Laurent Ferrara & Clément Marsilli, 2019.
"Nowcasting global economic growth: A factor‐augmented mixed‐frequency approach,"
The World Economy, Wiley Blackwell, vol. 42(3), pages 846-875, March.
- L. Ferrara & C. Marsilli, 2014. "Nowcasting global economic growth: A factor-augmented mixed-frequency approach," Working papers 515, Banque de France.
- Laurent Ferrara & Clément Marsilli, 2019. "Nowcasting global economic growth: A factor-augmented mixed-frequency approach," Post-Print hal-01636761, HAL.
- Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013.
"Now-Casting and the Real-Time Data Flow,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237,
Elsevier.
- Reichlin, Lucrezia & Giannone, Domenico & Modugno, Michele & Banbura, Marta, 2012. "Now-casting and the real-time data flow," CEPR Discussion Papers 9112, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta & Modugno, Michele, 2013. "Now-casting and the real-time data flow," Working Paper Series 1564, European Central Bank.
- Martha Banbura & Domenico Giannone & Michèle Modugno & Lucrezia Reichlin, 2012. "Now-Casting and the Real-Time Data Flow," Working Papers ECARES ECARES 2012-026, ULB -- Universite Libre de Bruxelles.
- Bennedsen, Mikkel & Hillebrand, Eric & Koopman, Siem Jan, 2021.
"Modeling, forecasting, and nowcasting U.S. CO2 emissions using many macroeconomic predictors,"
Energy Economics, Elsevier, vol. 96(C).
- Mikkel Bennedsen & Eric Hillebrand & Siem Jan Koopman, 2019. "Modeling, Forecasting, and Nowcasting U.S. CO2 Emissions Using Many Macroeconomic Predictors," CREATES Research Papers 2019-21, Department of Economics and Business Economics, Aarhus University.
- Gary Koop & Stuart McIntyre & James Mitchell, 2020. "UK regional nowcasting using a mixed frequency vector auto‐regressive model with entropic tilting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 91-119, January.
- Dahlhaus, Tatjana & Guénette, Justin-Damien & Vasishtha, Garima, 2017.
"Nowcasting BRIC+M in real time,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 915-935.
- Tatjana Dahlhaus & Justin-Damien Guénette & Garima Vasishtha, 2015. "Nowcasting BRIC+M in Real Time," Staff Working Papers 15-38, Bank of Canada.
- Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003.
"Testing for unit roots in heterogeneous panels,"
Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
- Pasaran, M.H. & Im, K.S. & Shin, Y., 1995. "Testing for Unit Roots in Heterogeneous Panels," Cambridge Working Papers in Economics 9526, Faculty of Economics, University of Cambridge.
- Tom Doan, "undated". "IPSHIN: RATS procedure to implement Im, Pesaran and Shin panel unit root test," Statistical Software Components RTS00098, Boston College Department of Economics.
- Modugno, Michele, 2013.
"Now-casting inflation using high frequency data,"
International Journal of Forecasting, Elsevier, vol. 29(4), pages 664-675.
- Modugno, Michele, 2011. "Nowcasting inflation using high frequency data," Working Paper Series 1324, European Central Bank.
- Daniela Bragoli & Jack Fosten, 2018.
"Nowcasting Indian GDP,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 80(2), pages 259-282, April.
- Daniela Bragoli & Jack Fosten, 2016. "Nowcasting Indian GDP," University of East Anglia School of Economics Working Paper Series 2016-06, School of Economics, University of East Anglia, Norwich, UK..
- Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018.
"Macroeconomic Nowcasting and Forecasting with Big Data,"
Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
- Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2017. "Macroeconomic nowcasting and forecasting with big data," Staff Reports 830, Federal Reserve Bank of New York.
- Giannone, Domenico & Tambalotti, Andrea & Sbordone, Argia & Bok, Brandyn & Caratelli, Daniele, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," CEPR Discussion Papers 12589, C.E.P.R. Discussion Papers.
- Chudik, Alexander & Pesaran, M. Hashem, 2015.
"Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors,"
Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
- Pesaran, Hashem & Chudik, Alexander, 2013. "Common Correlated Effects Estimation of Heterogeneous Dynamic Panel Data Models with Weakly Exogenous Regressors," Cambridge Working Papers in Economics 1317, Faculty of Economics, University of Cambridge.
- Alexander Chudik & M. Hashem Pesaran, 2013. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Globalization Institute Working Papers 146, Federal Reserve Bank of Dallas.
- Alexander Chudik & M. Hashem Pesaran, 2013. "Common Correlated Effects Estimation of Heterogeneous Dynamic Panel Data Models with Weakly Exogenous Regressors," CESifo Working Paper Series 4232, CESifo.
- Nathan E. Hultman & Leon Clarke & Carla Frisch & Kevin Kennedy & Haewon McJeon & Tom Cyrs & Pete Hansel & Paul Bodnar & Michelle Manion & Morgan R. Edwards & Ryna Cui & Christina Bowman & Jessie Lund , 2020. "Fusing subnational with national climate action is central to decarbonization: the case of the United States," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
- Edward S. Knotek & Saeed Zaman, 2017.
"Nowcasting U.S. Headline and Core Inflation,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 931-968, August.
- Edward S. Knotek & Saeed Zaman, 2014. "Nowcasting U.S. Headline and Core Inflation," Working Papers (Old Series) 1403, Federal Reserve Bank of Cleveland.
- Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
- Kevin Rennert & Brian C. Prest & William A. Pizer & Richard G. Newell & David Anthoff & Cora Kingdon & Lisa Rennels & Roger Cooke & Adrian E. Raftery & Hana Sevcikova & Frank Errickson, 2021.
"The Social Cost of Carbon: Advances in Long-Term Probabilistic Projections of Population, GDP, Emissions, and Discount Rates,"
Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 52(2 (Fall)), pages 223-305.
- Rennert, Kevin & Prest, Brian C. & Pizer, William & Newell, Richard G. & Anthoff, David & Kingdon, Cora & Rennels, Lisa & Cooke, Roger & Raftery, Adrian E. & Ševčíková, Hana & Errickson, Frank, 2021. "The Social Cost of Carbon: Advances in Long-Term Probabilistic Projections of Population, GDP, Emissions, and Discount Rates," RFF Working Paper Series 21-28, Resources for the Future.
- Jack Fosten & Daniel Gutknecht, 2020. "Testing Nowcast Monotonicity with Estimated Factors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 107-123, January.
- Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
- Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
- Jack Fosten & Shaoni Nandi, 2023. "Nowcasting from cross‐sectionally dependent panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 898-919, September.
- Nordhaus, William D., 1993.
"Rolling the 'DICE': an optimal transition path for controlling greenhouse gases,"
Resource and Energy Economics, Elsevier, vol. 15(1), pages 27-50, March.
- William D. Nordhaus, 1992. "Rolling the 'Dice': An Optimal Transition Path for Controlling Greenhouse Gases," Cowles Foundation Discussion Papers 1019, Cowles Foundation for Research in Economics, Yale University.
- Sinclair, Tara M. & Stekler, H.O., 2013.
"Examining the quality of early GDP component estimates,"
International Journal of Forecasting, Elsevier, vol. 29(4), pages 736-750.
- Tara M. Sinclair & H.O. Stekler, 2011. "Examining the Quality of Early GDP Component Estimates," Working Papers 2011-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting, revised Dec 2011.
- Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
- Wendun Wang & Xinyu Zhang & Richard Paap, 2019. "To pool or not to pool: What is a good strategy for parameter estimation and forecasting in panel regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 724-745, August.
- Larson, William D. & Sinclair, Tara M., 2022.
"Nowcasting unemployment insurance claims in the time of COVID-19,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 635-647.
- William D. Larson & Tara M. Sinclair, 2020. "Nowcasting Unemployment Insurance Claims in the Time of COVID-19," Working Papers 2020-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting, revised Aug 2020.
- William D. Larson & Tara M. Sinclair, 2020. "Nowcasting unemployment insurance claims in the time of COVID-19," CAMA Working Papers 2020-63, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- William D. Larson & Tara M. Sinclair, 2020. "Nowcasting Unemployment Insurance Claims in the Time of COVID-19," FHFA Staff Working Papers 20-02, Federal Housing Finance Agency.
- Jack Fosten & Ryan Greenaway-McGrevy, 2022. "Panel data nowcasting," Econometric Reviews, Taylor & Francis Journals, vol. 41(7), pages 675-696, August.
- Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
- Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
- Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002.
"Unit root tests in panel data: asymptotic and finite-sample properties,"
Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
- Tom Doan, "undated". "LEVINLIN: RATS procedure to perform Levin-Lin-Chu test for unit roots in panel data," Statistical Software Components RTS00242, Boston College Department of Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jack Fosten & Shaoni Nandi, 2023. "Nowcasting from cross‐sectionally dependent panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 898-919, September.
- Jack Fosten & Daniel Gutknecht, 2021. "Horizon confidence sets," Empirical Economics, Springer, vol. 61(2), pages 667-692, August.
- Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024.
"Lessons from nowcasting GDP across the world,"
Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217,
Edward Elgar Publishing.
- Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2023. "Lessons from Nowcasting GDP across the World," International Finance Discussion Papers 1385, Board of Governors of the Federal Reserve System (U.S.).
- Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas & Irena Pekarskiene, 2024. "Future directions in nowcasting economic activity: A systematic literature review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1199-1233, September.
- repec:ptu:bdpart:e201613 is not listed on IDEAS
- George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
- Kyosuke Chikamatsu, Naohisa Hirakata, Yosuke Kido, Kazuki Otaka, 2018. "Nowcasting Japanese GDPs," Bank of Japan Working Paper Series 18-E-18, Bank of Japan.
- Heiner Mikosch & Laura Solanko, 2019. "Forecasting Quarterly Russian GDP Growth with Mixed-Frequency Data," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 19-35, March.
- Chikamatsu, Kyosuke & Hirakata, Naohisa & Kido, Yosuke & Otaka, Kazuki, 2021. "Mixed-frequency approaches to nowcasting GDP: An application to Japan," Japan and the World Economy, Elsevier, vol. 57(C).
- Baumeister, Christiane & Guérin, Pierre, 2021.
"A comparison of monthly global indicators for forecasting growth,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," NBER Working Papers 28014, National Bureau of Economic Research, Inc.
- Baumeister, Christiane & Guerin, Pierre, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CEPR Discussion Papers 15403, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Pierre Guerin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CAMA Working Papers 2020-93, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CESifo Working Paper Series 8656, CESifo.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017.
"The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey,"
Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
- Matteo Mogliani & Véronique Brunhes-Lesage & Olivier Darné & Bertrand Pluyaud, 2014. "New estimate of the MIBA forecasting model. Modeling first-release GDP using the Banque de France's Monthly Business Survey and the blocking approach," Working papers 473, Banque de France.
- Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
- Caruso, Alberto, 2018. "Nowcasting with the help of foreign indicators: The case of Mexico," Economic Modelling, Elsevier, vol. 69(C), pages 160-168.
- Knotek, Edward S. & Zaman, Saeed, 2019.
"Financial nowcasts and their usefulness in macroeconomic forecasting,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1708-1724.
- Edward S. Knotek & Saeed Zaman, 2017. "Financial Nowcasts and Their Usefulness in Macroeconomic Forecasting," Working Papers (Old Series) 1702, Federal Reserve Bank of Cleveland.
- Bańbura, Marta & Belousova, Irina & Bodnár, Katalin & Tóth, Máté Barnabás, 2023. "Nowcasting employment in the euro area," Working Paper Series 2815, European Central Bank.
- Mahmut Gunay, 2018. "Nowcasting Annual Turkish GDP Growth with MIDAS," CBT Research Notes in Economics 1810, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
- Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017.
"The role of indicator selection in nowcasting euro-area GDP in pseudo-real time,"
Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
- A. Girardi & R. Golinelli & C. Pappalardo, 2014. "The Role of Indicator Selection in Nowcasting Euro Area GDP in Pseudo Real Time," Working Papers wp919, Dipartimento Scienze Economiche, Universita' di Bologna.
- Mahmood, Asif & Masood, Hina, 2024. "A High-frequency Monthly Measure of Real Economic Activity in Pakistan," MPRA Paper 121838, University Library of Munich, Germany.
- Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
More about this item
Keywords
Panel data; Nowcasting; CO2 emissions; Energy consumption; Environmental degradation;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:20-30. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.