A Nowcasting Model of Industrial Production using Alternative Data and Machine Learning Approaches
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fornaro, Paolo, 2020. "Nowcasting Industrial Production Using Uncoventional Data Sources," ETLA Working Papers 80, The Research Institute of the Finnish Economy.
- Timmermann, Allan, 2006.
"Forecast Combinations,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196,
Elsevier.
- Timmermann, Allan, 2005. "Forecast Combinations," CEPR Discussion Papers 5361, C.E.P.R. Discussion Papers.
- Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
- Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.
- Capistrán, Carlos & Timmermann, Allan, 2009.
"Forecast Combination With Entry and Exit of Experts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
- Timmermann Allan & Capistrán Carlos, 2006. "Forecast Combination with Entry and Exit of Experts," Working Papers 2006-08, Banco de México.
- Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.
- James Chapman & Ajit Desai, .
"Using payments data to nowcast macroeconomic variables during the onset of Covid-19,"
Journal of Financial Market Infrastructures, Journal of Financial Market Infrastructures.
- James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
- Marijn A. Bolhuis & Brett Rayner, 2020. "Deus ex Machina? A Framework for Macro Forecasting with Machine Learning," IMF Working Papers 2020/045, International Monetary Fund.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
- Takashi Nakazawa, 2022. "Constructing GDP Nowcasting Models Using Alternative Data," Bank of Japan Working Paper Series 22-E-9, Bank of Japan.
- Daniel J. Lewis & Karel Mertens & James H. Stock & Mihir Trivedi, 2021.
"High-Frequency Data and a Weekly Economic Index during the Pandemic,"
AEA Papers and Proceedings, American Economic Association, vol. 111, pages 326-330, May.
- Daniel J. Lewis & Karel Mertens & James H. Stock & Mihir Trivedi, 2020. "High Frequency Data and a Weekly Economic Index during the Pandemic," Staff Reports 954, Federal Reserve Bank of New York.
- Seisaku Kameda, 2022. "Use of Alternative Data in the Bank of Japan's Research Activities," Bank of Japan Review Series 22-E-1, Bank of Japan.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fosten, Jack & Nandi, Shaoni, 2025. "Nowcasting U.S. state-level CO2 emissions and energy consumption," International Journal of Forecasting, Elsevier, vol. 41(1), pages 20-30.
- Marco Fruzzetti & Tiziano Ropele, 2024. "Nowcasting Italian industrial production: the predictive role of lubricant oils," Questioni di Economia e Finanza (Occasional Papers) 866, Bank of Italy, Economic Research and International Relations Area.
- Kakuho Furukawa & Ryohei Hisano, 2022. "A Nowcasting Model of Exports Using Maritime Big Data," Bank of Japan Working Paper Series 22-E-19, Bank of Japan.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Furukawa, Kakuho & Hisano, Ryohei & Minoura, Yukio & Yagi, Tomoyuki, 2024. "A nowcasting model of industrial production using alternative data and machine learning approaches," Japan and the World Economy, Elsevier, vol. 71(C).
- Takashi Nakazawa, 2022. "Constructing GDP Nowcasting Models Using Alternative Data," Bank of Japan Working Paper Series 22-E-9, Bank of Japan.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Fernando M. Duarte & Carlo Rosa, 2015.
"The equity risk premium: a review of models,"
Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
- Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Staff Reports 714, Federal Reserve Bank of New York.
- Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023.
"A penalized two-pass regression to predict stock returns with time-varying risk premia,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2021. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Swiss Finance Institute Research Paper Series 21-09, Swiss Finance Institute.
- Gaetan Bakalli & St'ephane Guerrier & Olivier Scaillet, 2022. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Papers 2208.00972, arXiv.org.
- Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Post-Print hal-04325655, HAL.
- Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
- Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
- Lahiri, Kajal & Yang, Liu, 2013.
"Forecasting Binary Outcomes,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106,
Elsevier.
- Kajal Lahiri & Liu Yang, 2012. "Forecasting Binary Outcomes," Discussion Papers 12-09, University at Albany, SUNY, Department of Economics.
- Mauro Costantini & Ulrich Gunter & Robert M. Kunst, 2017.
"Forecast Combinations in a DSGE‐VAR Lab,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(3), pages 305-324, April.
- Costantini, Mauro & Gunter, Ulrich & Kunst, Robert M., 2014. "Forecast combinations in a DSGE-VAR lab," Economics Series 309, Institute for Advanced Studies.
- Ferrara, Laurent & Marsilli, Clément & Ortega, Juan-Pablo, 2014.
"Forecasting growth during the Great Recession: is financial volatility the missing ingredient?,"
Economic Modelling, Elsevier, vol. 36(C), pages 44-50.
- Laurent Ferrara & Clément Marsilli & Juan-Pablo Ortega, 2013. "Forecasting US growth during the Great Recession: Is the financial volatility the missing ingredient?," EconomiX Working Papers 2013-19, University of Paris Nanterre, EconomiX.
- Laurent Ferrara & Clément Marsilli & Juan-Pablo Ortega, 2014. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Post-Print hal-01385941, HAL.
- Laurent Ferrara & Clément Marsilli & Ortega, J-P., 2013. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Working papers 454, Banque de France.
- Laurent Ferrara & Clément Marsilli & Juan-Pablo Ortega, 2013. "Forecasting US growth during the Great Recession: Is the financial volatility the missing ingredient?," Working Papers hal-04141198, HAL.
- Paroissien, Emmanuel, 2020.
"Forecasting bulk prices of Bordeaux wines using leading indicators,"
International Journal of Forecasting, Elsevier, vol. 36(2), pages 292-309.
- Emmanuel Paroissien, 2020. "Forecasting bulk prices of Bordeaux wines using leading indicators," Post-Print hal-02408202, HAL.
- Lin, Hai & Tao, Xinyuan & Wu, Chunchi, 2022. "Forecasting earnings with combination of analyst forecasts," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 133-159.
- Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
- Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015.
"Forecasting day-ahead electricity prices: Utilizing hourly prices,"
Energy Economics, Elsevier, vol. 50(C), pages 227-239.
- Eran Raviv & Kees E. Bouwman & Dick van Dijk, 2013. "Forecasting Day-Ahead Electricity Prices: Utilizing Hourly Prices," Tinbergen Institute Discussion Papers 13-068/III, Tinbergen Institute.
- Baumeister, Christiane & Guérin, Pierre, 2021.
"A comparison of monthly global indicators for forecasting growth,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," NBER Working Papers 28014, National Bureau of Economic Research, Inc.
- Baumeister, Christiane & Guerin, Pierre, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CEPR Discussion Papers 15403, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Pierre Guerin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CAMA Working Papers 2020-93, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CESifo Working Paper Series 8656, CESifo.
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Monticini, Andrea & Ravazzolo, Francesco, 2014.
"Forecasting the intraday market price of money,"
Journal of Empirical Finance, Elsevier, vol. 29(C), pages 304-315.
- Andrea Monticini & Francesco Ravazzolo, 2011. "Forecasting the intraday market price of money," Working Paper 2011/06, Norges Bank.
- Andrea Monticini & Francesco Ravazzolo, 2014. "Forecasting the intraday market price of money," DISCE - Working Papers del Dipartimento di Economia e Finanza def010, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
- Konstantin A. Kholodilin & Boriss Siliverstovs, 2014.
"Business Confidence and Forecasting of Housing Prices and Rents in Large German Cities,"
Discussion Papers of DIW Berlin
1360, DIW Berlin, German Institute for Economic Research.
- Konstantin Kholodilin, 2014. "Business confidence and forecasting of housing prices and rents in large German cities," ERSA conference papers ersa14p9, European Regional Science Association.
- Rossi, Barbara & Sekhposyan, Tatevik, 2014.
"Evaluating predictive densities of US output growth and inflation in a large macroeconomic data set,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 662-682.
- Barbara Rossi & Tatevik Sekhposyan, 2013. "Evaluating predictive densities of U.S. output growth and inflation in a large macroeconomic data set," Economics Working Papers 1370, Department of Economics and Business, Universitat Pompeu Fabra.
- Barbara Rossi, 2015. "Evaluating Predictive Densities of US Output Growth and Inflation in a Large Macroeconomic Data Set," Working Papers 689, Barcelona School of Economics.
- Francesco Ravazzolo & Joaquin L. Vespignani, 2015.
"A new monthly indicator of global real economic activity,"
Globalization Institute Working Papers
244, Federal Reserve Bank of Dallas.
- Ravazzolo, Francesco & Vespignani, Joaquin, 2015. "A new monthly indicator of global real economic activity," Working Papers 2015-07, University of Tasmania, Tasmanian School of Business and Economics.
- Francesco Ravazzolo & Joaquin L. Vespignani, 2015. "A New Monthly Indicator of Global Real Economic Activity," CAMA Working Papers 2015-13, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Francesco Ravazzolo & Joaquin L. Vespignani, 2015. "A New Monthly Indicator of Global Real Economic Activity," Working Papers No 2/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Francesco Ravazzolo & Joaquin L. Vespignani, 2015. "A New Monthly Indicator of Global Real Economic Activity," Working Paper 2015/06, Norges Bank.
More about this item
Keywords
; ; ; ; ; ;JEL classification:
- C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
- E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-12-19 (Big Data)
- NEP-CMP-2022-12-19 (Computational Economics)
- NEP-ENE-2022-12-19 (Energy Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boj:bojwps:wp22e16. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bank of Japan (email available below). General contact details of provider: https://edirc.repec.org/data/bojgvjp.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/boj/bojwps/wp22e16.html