Learning from Forecast Errors: A New Approach to Forecast Combinations
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combination," Working Papers 202024, University of California at Riverside, Department of Economics.
References listed on IDEAS
- Ledoit, Olivier & Wolf, Michael, 2004.
"A well-conditioned estimator for large-dimensional covariance matrices,"
Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
- Ledoit, Olivier & Wolf, Michael, 2000. "A well conditioned estimator for large dimensional covariance matrices," DES - Working Papers. Statistics and Econometrics. WS 10087, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Diebold, Francis X. & Shin, Minchul, 2019.
"Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially Egalitarian Lasso and its Derivatives," PIER Working Paper Archive 18-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 17 Aug 2018.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially-Egalitarian Lasso and its Derivatives," NBER Working Papers 24967, National Bureau of Economic Research, Inc.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Nikolaus Hautsch & Lada M. Kyj & Roel C. A. Oomen, 2012.
"A blocking and regularization approach to high‐dimensional realized covariance estimation,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(4), pages 625-645, June.
- Hautsch, Nikolaus & Kyj, Lada M. & Oomen, Roel C.A., 2009. "A blocking and regularization approach to high dimensional realized covariance estimation," SFB 649 Discussion Papers 2009-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Hautsch, Nikolaus & Kyj, Lada M. & Hautsch, Nikolaus, 2009. "A blocking and regularization approach to high dimensional realized covariance estimation," CFS Working Paper Series 2009/20, Center for Financial Studies (CFS).
- Ledoit, Olivier & Wolf, Michael, 2003.
"Improved estimation of the covariance matrix of stock returns with an application to portfolio selection,"
Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
- Ledoit, Olivier & Wolf, Michael, 2000. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," DES - Working Papers. Statistics and Econometrics. WS 10089, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Olivier Ledoit & Michael Wolf, 2001. "Improved estimation of the covariance matrix of stock returns with an application to portofolio selection," Economics Working Papers 586, Department of Economics and Business, Universitat Pompeu Fabra.
- Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
- Chamberlain, Gary & Rothschild, Michael, 1983.
"Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets,"
Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
- Gary Chamberlain & Michael Rothschild, 1982. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," NBER Working Papers 0996, National Bureau of Economic Research, Inc.
- Chamberlain, Gary & Rothschild, Michael, 1982. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Scholarly Articles 3230355, Harvard University Department of Economics.
- Thomson, Mary E. & Pollock, Andrew C. & Önkal, Dilek & Gönül, M. Sinan, 2019. "Combining forecasts: Performance and coherence," International Journal of Forecasting, Elsevier, vol. 35(2), pages 474-484.
- Ledoit, Olivier & Wolf, Michael, 2015.
"Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions,"
Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
- Olivier Ledoit & Michael Wolf, 2013. "Spectrum estimation: a unified framework for covariance matrix estimation and PCA in large dimensions," ECON - Working Papers 105, Department of Economics - University of Zurich, revised Jul 2013.
- Laurent Callot & Mehmet Caner & A. Özlem Önder & Esra Ulaşan, 2021. "A Nodewise Regression Approach to Estimating Large Portfolios," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 520-531, March.
- Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
- Christian Brownlees & Eulàlia Nualart & Yucheng Sun, 2018. "Realized networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 986-1006, November.
- Laurent A. F. Callot & Anders B. Kock & Marcelo C. Medeiros, 2017. "Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 140-158, January.
- Capistrán, Carlos & Timmermann, Allan, 2009.
"Forecast Combination With Entry and Exit of Experts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
- Timmermann Allan & Capistrán Carlos, 2006. "Forecast Combination with Entry and Exit of Experts," Working Papers 2006-08, Banco de México.
- Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.
- Claeskens, Gerda & Magnus, Jan R. & Vasnev, Andrey L. & Wang, Wendun, 2016.
"The forecast combination puzzle: A simple theoretical explanation,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 754-762.
- Gerda Claeskens & Jan Magnus & Andrey Vasnev & Wendun Wang, 2014. "The Forecast Combination Puzzle: A Simple Theoretical Explanation," Tinbergen Institute Discussion Papers 14-127/III, Tinbergen Institute.
- Gerda Claeskens & Jan Magnus & Andrey Vasnev & Wendun Wang, 2016. "The forecast combination puzzle: a simple theoretical explanation," Working Papers of Department of Decision Sciences and Information Management, Leuven 532152, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Dai, Chaoxing & Lu, Kun & Xiu, Dacheng, 2019. "Knowing factors or factor loadings, or neither? Evaluating estimators of large covariance matrices with noisy and asynchronous data," Journal of Econometrics, Elsevier, vol. 208(1), pages 43-79.
- Yeung Lewis Chan & James H. Stock & Mark W. Watson, 1999. "A dynamic factor model framework for forecast combination," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 91-121.
- Connor, Gregory & Korajczyk, Robert A., 1988. "Risk and return in an equilibrium APT : Application of a new test methodology," Journal of Financial Economics, Elsevier, vol. 21(2), pages 255-289, September.
- Timmermann, Allan, 2006.
"Forecast Combinations,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196,
Elsevier.
- Timmermann, Allan, 2005. "Forecast Combinations," CEPR Discussion Papers 5361, C.E.P.R. Discussion Papers.
- Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.
- Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
- Yingying Fan & Cheng Yong Tang, 2013. "Tuning parameter selection in high dimensional penalized likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 531-552, June.
- Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
- Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, June.
- Fan, Jianqing & Xue, Lingzhou & Yao, Jiawei, 2017. "Sufficient forecasting using factor models," Journal of Econometrics, Elsevier, vol. 201(2), pages 292-306.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
- Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
- Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
- Fan, Jianqing & Wang, Weichen & Zhong, Yiqiao, 2019. "Robust covariance estimation for approximate factor models," Journal of Econometrics, Elsevier, vol. 208(1), pages 5-22.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tae-Hwy Lee & Ekaterina Seregina, 2024.
"Optimal Portfolio Using Factor Graphical Lasso,"
Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 670-695.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Optimal Portfolio Using Factor Graphical Lasso," Papers 2011.00435, arXiv.org, revised Apr 2023.
- Tae-Hwy Lee & Ekaterina Seregina, 2023. "Optimal Portfolio Using Factor Graphical Lasso," Working Papers 202302, University of California at Riverside, Department of Economics.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Optimal Portfolio Using Factor Graphical Lasso," Working Papers 202025, University of California at Riverside, Department of Economics.
- Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020.
"PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices,"
Energies, MDPI, vol. 13(14), pages 1-19, July.
- Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA forecast averaging - predicting day-ahead and intraday electricity prices," WORking papers in Management Science (WORMS) WORMS/20/02, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
- Cheng, Xu & Hansen, Bruce E., 2015.
"Forecasting with factor-augmented regression: A frequentist model averaging approach,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
- Timmermann, Allan, 2006.
"Forecast Combinations,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196,
Elsevier.
- Timmermann, Allan, 2005. "Forecast Combinations," CEPR Discussion Papers 5361, C.E.P.R. Discussion Papers.
- Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.
- Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
- Bollerslev, Tim & Meddahi, Nour & Nyawa, Serge, 2019. "High-dimensional multivariate realized volatility estimation," Journal of Econometrics, Elsevier, vol. 212(1), pages 116-136.
- Jianqing Fan & Yuan Liao & Martina Mincheva, 2013.
"Large covariance estimation by thresholding principal orthogonal complements,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
- Fan, Jianqing & Liao, Yuan & Mincheva, Martina, 2011. "Large covariance estimation by thresholding principal orthogonal complements," MPRA Paper 38697, University Library of Munich, Germany.
- Zhentao Shi & Liangjun Su & Tian Xie, 2020. "L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis," Papers 2010.09477, arXiv.org, revised Aug 2022.
- Jushan Bai & Shuzhong Shi, 2011. "Estimating High Dimensional Covariance Matrices and its Applications," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 199-215, November.
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Uniejewski, Bartosz & Maciejowska, Katarzyna, 2023.
"LASSO principal component averaging: A fully automated approach for point forecast pooling,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1839-1852.
- Bartosz Uniejewski & Katarzyna Maciejowska, 2022. "LASSO Principal Component Averaging -- a fully automated approach for point forecast pooling," Papers 2207.04794, arXiv.org.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015.
"Risks of large portfolios,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
- Jianqing Fan & Yuan Liao & Xiaofeng Shi, 2013. "Risks of Large Portfolios," Papers 1302.0926, arXiv.org.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2013. "Risks of large portfolios," MPRA Paper 44206, University Library of Munich, Germany.
- Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
More about this item
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
NEP fields
This paper has been announced in the following NEP Reports:- NEP-EEC-2020-11-23 (European Economics)
- NEP-ETS-2020-11-23 (Econometric Time Series)
- NEP-FOR-2020-11-23 (Forecasting)
- NEP-MAC-2020-11-23 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.02077. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.