A Nodewise Regression Approach to Estimating Large Portfolios
Author
Abstract
Suggested Citation
DOI: 10.1080/07350015.2019.1683018
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tae-Hwy Lee & Ekaterina Seregina, 2024.
"Optimal Portfolio Using Factor Graphical Lasso,"
Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 670-695.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Optimal Portfolio Using Factor Graphical Lasso," Papers 2011.00435, arXiv.org, revised Apr 2023.
- Tae-Hwy Lee & Ekaterina Seregina, 2023. "Optimal Portfolio Using Factor Graphical Lasso," Working Papers 202302, University of California at Riverside, Department of Economics.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Optimal Portfolio Using Factor Graphical Lasso," Working Papers 202025, University of California at Riverside, Department of Economics.
- Fan, Qingliang & Wu, Ruike & Yang, Yanrong & Zhong, Wei, 2024. "Time-varying minimum variance portfolio," Journal of Econometrics, Elsevier, vol. 239(2).
- Yilun Wang & Shengjie Guo, 2024. "RVRAE: A Dynamic Factor Model Based on Variational Recurrent Autoencoder for Stock Returns Prediction," Papers 2403.02500, arXiv.org.
- Christis Katsouris, 2021. "Optimal Portfolio Choice and Stock Centrality for Tail Risk Events," Papers 2112.12031, arXiv.org.
- Sumanjay Dutta & Shashi Jain, 2023. "Precision versus Shrinkage: A Comparative Analysis of Covariance Estimation Methods for Portfolio Allocation," Papers 2305.11298, arXiv.org.
- Tae-Hwy Lee & Ekaterina Seregina, 2020.
"Learning from Forecast Errors: A New Approach to Forecast Combination,"
Working Papers
202024, University of California at Riverside, Department of Economics.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combinations," Papers 2011.02077, arXiv.org, revised May 2021.
- Anik Burman & Sayantan Banerjee, 2021. "High-dimensional Portfolio Optimization using Joint Shrinkage," Papers 2109.13633, arXiv.org.
- Christis Katsouris, 2023. "Statistical Estimation for Covariance Structures with Tail Estimates using Nodewise Quantile Predictive Regression Models," Papers 2305.11282, arXiv.org, revised Jul 2023.
- Esra Ulasan & A. Özlem Önder, 2023. "Large portfolio optimisation approaches," Journal of Asset Management, Palgrave Macmillan, vol. 24(6), pages 485-497, October.
- Saman Banafti & Tae-Hwy Lee, 2022.
"Inferential Theory for Granular Instrumental Variables in High Dimensions,"
Working Papers
202203, University of California at Riverside, Department of Economics.
- Saman Banafti & Tae-Hwy Lee, 2023. "Inferential Theory for Granular Instrumental Variables in High Dimensions," Working Papers 202308, University of California at Riverside, Department of Economics.
- Saman Banafti & Tae-Hwy Lee, 2022. "Inferential Theory for Granular Instrumental Variables in High Dimensions," Papers 2201.06605, arXiv.org, revised Sep 2023.
- Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
- Mehmet Caner, 2021. "A Starting Note: A Historical Perspective in Lasso," International Econometric Review (IER), Econometric Research Association, vol. 13(1), pages 1-3, March.
- Caner, Mehmet & Medeiros, Marcelo & Vasconcelos, Gabriel F.R., 2023.
"Sharpe Ratio analysis in high dimensions: Residual-based nodewise regression in factor models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 393-417.
- Mehmet Caner & Marcelo Medeiros & Gabriel Vasconcelos, 2020. "Sharpe Ratio Analysis in High Dimensions: Residual-Based Nodewise Regression in Factor Models," Papers 2002.01800, arXiv.org, revised Feb 2022.
- Dutta, Sumanjay & Jain, Shashi, 2024. "Shrinkage and thresholding approaches for expected utility portfolios: An analysis in terms of predictive ability," Finance Research Letters, Elsevier, vol. 64(C).
- Mehmet Caner & Xu Han, 2021.
"An upper bound for functions of estimators in high dimensions,"
Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 1-13, January.
- Mehmet Caner & Xu Han, 2020. "An Upper Bound for Functions of Estimators in High Dimensions," Papers 2008.02636, arXiv.org.
- Guðmundsson, Guðmundur Stefán & Brownlees, Christian, 2021. "Detecting groups in large vector autoregressions," Journal of Econometrics, Elsevier, vol. 225(1), pages 2-26.
- Mehmet Caner & Qingliang Fan & Yingying Li, 2024. "Navigating Complexity: Constrained Portfolio Analysis in High Dimensions with Tracking Error and Weight Constraints," Papers 2402.17523, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:39:y:2021:i:2:p:520-531. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.