IDEAS home Printed from https://ideas.repec.org/p/zur/econwp/105.html
   My bibliography  Save this paper

Spectrum estimation: a unified framework for covariance matrix estimation and PCA in large dimensions

Author

Listed:
  • Olivier Ledoit
  • Michael Wolf

Abstract

Covariance matrix estimation and principal component analysis (PCA) are two cornerstones of multivariate analysis. Classic textbook solutions perform poorly when the dimension of the data is of a magnitude similar to the sample size, or even larger. In such settings, there is a common remedy for both statistical problems: nonlinear shrinkage of the eigenvalues of the sample covariance matrix. The optimal nonlinear shrinkage formula depends on unknown population quantities and is thus not available. It is, however, possible to consistently estimate an oracle nonlinear shrinkage, which is motivated on asymptotic grounds. A key tool to this end is consistent estimation of the set of eigenvalues of the population covariance matrix (also known as the spectrum), an interesting and challenging problem in its own right. Extensive Monte Carlo simulations demonstrate that our methods have desirable finite-sample properties and outperform previous proposals.

Suggested Citation

  • Olivier Ledoit & Michael Wolf, 2013. "Spectrum estimation: a unified framework for covariance matrix estimation and PCA in large dimensions," ECON - Working Papers 105, Department of Economics - University of Zurich, revised Jul 2013.
  • Handle: RePEc:zur:econwp:105
    as

    Download full text from publisher

    File URL: https://www.zora.uzh.ch/id/eprint/70168/9/econwp105.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Roll, Richard & Ross, Stephen A, 1980. "An Empirical Investigation of the Arbitrage Pricing Theory," Journal of Finance, American Finance Association, vol. 35(5), pages 1073-1103, December.
    3. Anatolyev, Stanislav, 2012. "Inference in regression models with many regressors," Journal of Econometrics, Elsevier, vol. 170(2), pages 368-382.
    4. Khan, Mozaffar, 2008. "Are accruals mispriced Evidence from tests of an Intertemporal Capital Asset Pricing Model," Journal of Accounting and Economics, Elsevier, vol. 45(1), pages 55-77, March.
    5. Demetrescu, Matei & Hanck, Christoph, 2012. "A simple nonstationary-volatility robust panel unit root test," Economics Letters, Elsevier, vol. 117(1), pages 10-13.
    6. Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    7. Theodoros Tsagaris & Ajay Jasra & Niall Adams, 2012. "Robust and adaptive algorithms for online portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1651-1662, November.
    8. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    9. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    10. Silverstein, J. W. & Choi, S. I., 1995. "Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 295-309, August.
    11. Silverstein, J. W. & Bai, Z. D., 1995. "On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 175-192, August.
    12. Pedro Duarte Silva, A., 2011. "Two-group classification with high-dimensional correlated data: A factor model approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2975-2990, November.
    13. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2014. "On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 215-228.
    2. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    4. Taras Bodnar & Arjun K. Gupta & Nestor Parolya, 2013. "Optimal Linear Shrinkage Estimator for Large Dimensional Precision Matrix," Papers 1308.0931, arXiv.org, revised Mar 2014.
    5. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
    6. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    7. Olivier Ledoit & Sandrine P�ch�, 2009. "Eigenvectors of some large sample covariance matrices ensembles," IEW - Working Papers 407, Institute for Empirical Research in Economics - University of Zurich.
    8. Olivier Ledoit & Michael Wolf, 2013. "Optimal estimation of a large-dimensional covariance matrix under Stein’s loss," ECON - Working Papers 122, Department of Economics - University of Zurich, revised Mar 2017.
    9. Li, Hua & Bai, Zhidong & Wong, Wing-Keung & McAleer, Michael, 2022. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Econometrics and Statistics, Elsevier, vol. 24(C), pages 133-150.
    10. Olivier Ledoit & Michael Wolf, 2019. "The power of (non-)linear shrinking: a review and guide to covariance matrix estimation," ECON - Working Papers 323, Department of Economics - University of Zurich, revised Feb 2020.
    11. Couillet, Romain & Kammoun, Abla & Pascal, Frédéric, 2016. "Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 249-274.
    12. Couillet, Romain & McKay, Matthew, 2014. "Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 99-120.
    13. Wen, Jun, 2018. "Estimation of two high-dimensional covariance matrices and the spectrum of their ratio," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 1-29.
    14. Olivier Ledoit & Michael Wolf, 2017. "Analytical nonlinear shrinkage of large-dimensional covariance matrices," ECON - Working Papers 264, Department of Economics - University of Zurich, revised Nov 2018.
    15. Tsubasa Ito & Tatsuya Kubokawa, 2015. "Linear Ridge Estimator of High-Dimensional Precision Matrix Using Random Matrix Theory ," CIRJE F-Series CIRJE-F-995, CIRJE, Faculty of Economics, University of Tokyo.
    16. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    17. Olivier Ledoit & Michael Wolf, 2019. "Quadratic shrinkage for large covariance matrices," ECON - Working Papers 335, Department of Economics - University of Zurich, revised Dec 2020.
    18. Yuasa, Ryota & Kubokawa, Tatsuya, 2020. "Ridge-type linear shrinkage estimation of the mean matrix of a high-dimensional normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    19. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
    20. Ledoit, Olivier & Wolf, Michael, 2021. "Shrinkage estimation of large covariance matrices: Keep it simple, statistician?," Journal of Multivariate Analysis, Elsevier, vol. 186(C).

    More about this item

    Keywords

    Large-dimensional asymptotics; covariance matrix eigenvalues; nonlinear shrinkage; principal component analysis;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zur:econwp:105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Severin Oswald (email available below). General contact details of provider: https://edirc.repec.org/data/seizhch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.