IDEAS home Printed from https://ideas.repec.org/p/zur/econwp/231.html
   My bibliography  Save this paper

Large dynamic covariance matrices

Author

Listed:
  • Robert F. Engle
  • Olivier Ledoit
  • Michael Wolf

Abstract

Second moments of asset returns are important for risk management and portfolio selection. The problem of estimating second moments can be approached from two angles: time series and the cross-section. In time series, the key is to account for conditional heteroskedasticity; a favored model is Dynamic Conditional Correlation (DCC), derived from the ARCH/GARCH family started by Engle (1982). In the cross-section, the key is to correct in-sample biases of sample covariance matrix eigenvalues; a favored model is nonlinear shrinkage, derived from Random Matrix Theory (RMT). The present paper marries these two strands of literature in order to deliver improved estimation of large dynamic covariance matrices.

Suggested Citation

  • Robert F. Engle & Olivier Ledoit & Michael Wolf, 2016. "Large dynamic covariance matrices," ECON - Working Papers 231, Department of Economics - University of Zurich, revised Apr 2017.
  • Handle: RePEc:zur:econwp:231
    as

    Download full text from publisher

    File URL: https://www.zora.uzh.ch/id/eprint/125469/7/econwp231.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
    4. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    5. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Gian Piero Aielli, 2013. "Dynamic Conditional Correlation: On Properties and Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 282-299, July.
    8. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    9. Hafner, Christian M. & Reznikova, Olga, 2012. "On the estimation of dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3533-3545.
    10. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    11. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    12. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    14. Ledoit, Olivier & Wolf, Michael, 2015. "Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
    15. Yin, Y. Q., 1986. "Limiting spectral distribution for a class of random matrices," Journal of Multivariate Analysis, Elsevier, vol. 20(1), pages 50-68, October.
    16. Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
    17. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    18. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    19. Silverstein, J. W. & Choi, S. I., 1995. "Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 295-309, August.
    20. Silverstein, J. W. & Bai, Z. D., 1995. "On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 175-192, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, André Alves Portela & Ferreira, Alexandre R., 2017. "On the choice of covariance specifications for portfolio selection problems," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(1), May.
    2. De Nard, Gianluca & Engle, Robert F. & Ledoit, Olivier & Wolf, Michael, 2022. "Large dynamic covariance matrices: Enhancements based on intraday data," Journal of Banking & Finance, Elsevier, vol. 138(C).
    3. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    4. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
    5. Zhao Zhao & Olivier Ledoit & Hui Jiang, 2019. "Risk reduction and efficiency increase in large portfolios: leverage and shrinkage," ECON - Working Papers 328, Department of Economics - University of Zurich, revised Jan 2020.
    6. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    7. Kei Nakagawa & Mitsuyoshi Imamura & Kenichi Yoshida, 2018. "Risk-Based Portfolios with Large Dynamic Covariance Matrices," IJFS, MDPI, vol. 6(2), pages 1-14, May.
    8. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    9. Wang, Jianshen & Taylor, Nick, 2018. "A comparison of static and dynamic portfolio policies," International Review of Financial Analysis, Elsevier, vol. 55(C), pages 111-127.
    10. Moura, Guilherme V. & Santos, André A.P. & Ruiz, Esther, 2020. "Comparing high-dimensional conditional covariance matrices: Implications for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 118(C).
    11. Olivier Ledoit & Michael Wolf, 2019. "Shrinkage estimation of large covariance matrices: keep it simple, statistician?," ECON - Working Papers 327, Department of Economics - University of Zurich, revised Jun 2021.
    12. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    13. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
    14. Carlos Trucíos & Mauricio Zevallos & Luiz K. Hotta & André A. P. Santos, 2019. "Covariance Prediction in Large Portfolio Allocation," Econometrics, MDPI, vol. 7(2), pages 1-24, May.
    15. Caldeira, João F & Moura, Guilherme Valle & Santos, André Alves Portela, 2013. "Seleção de carteiras utilizando o modelo Fama-French-Carhart," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
    16. Santos, André A.P. & Moura, Guilherme V., 2014. "Dynamic factor multivariate GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 606-617.
    17. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    18. Olivier Ledoit & Michael Wolf, 2017. "Analytical nonlinear shrinkage of large-dimensional covariance matrices," ECON - Working Papers 264, Department of Economics - University of Zurich, revised Nov 2018.
    19. Olivier Ledoit & Michael Wolf, 2014. "Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets Goldilocks," ECON - Working Papers 137, Department of Economics - University of Zurich, revised Feb 2017.
    20. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.

    More about this item

    Keywords

    Composite likelihood; dynamic conditional correlations; GARCH; Markowitz portfolio selection; nonlinear shrinkage.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zur:econwp:231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Severin Oswald (email available below). General contact details of provider: https://edirc.repec.org/data/seizhch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.