IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v138y2022ics0378426622000267.html
   My bibliography  Save this article

Large dynamic covariance matrices: Enhancements based on intraday data

Author

Listed:
  • De Nard, Gianluca
  • Engle, Robert F.
  • Ledoit, Olivier
  • Wolf, Michael

Abstract

Multivariate GARCH models do not perform well in large dimensions due to the so-called curse of dimensionality. The recent DCC-NL model of Engle et al. (2019) is able to overcome this curse via nonlinear shrinkage estimation of the unconditional correlation matrix. In this paper, we show how performance can be increased further by using open/high/low/close (OHLC) price data instead of simply using daily returns. A key innovation, for the improved modeling of not only dynamic variances but also of dynamic correlations, is the concept of a regularized return, obtained from a volatility proxy in conjunction with a smoothed sign of the observed return.

Suggested Citation

  • De Nard, Gianluca & Engle, Robert F. & Ledoit, Olivier & Wolf, Michael, 2022. "Large dynamic covariance matrices: Enhancements based on intraday data," Journal of Banking & Finance, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:jbfina:v:138:y:2022:i:c:s0378426622000267
    DOI: 10.1016/j.jbankfin.2022.106426
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426622000267
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2022.106426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    3. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    4. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    5. Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
    6. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    7. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    8. Ledoit, Olivier & Wolf, Michael, 2015. "Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
    9. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    10. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
    11. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised May 2024.
    12. Baillie, Richard T. & Bollerslev, Tim, 1992. "Prediction in dynamic models with time-dependent conditional variances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 91-113.
    13. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    14. Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
    15. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    16. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    17. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    18. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    19. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2019. "Range-based DCC models for covariance and value-at-risk forecasting," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 58-76.
    20. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    21. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    22. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    23. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    24. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    25. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    26. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    27. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    28. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2021. "Factor Models for Portfolio Selection in Large Dimensions: The Good, the Better and the Ugly [Using Principal Component Analysis to Estimate a High Dimensional Factor Model with High-frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 236-257.
    29. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    30. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianluca De Nard & Robert F. Engle & Bryan Kelly, 2024. "Factor-Mimicking Portfolios for Climate Risk," Financial Analysts Journal, Taylor & Francis Journals, vol. 80(3), pages 37-58, July.
    2. Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
    3. Mörstedt, Torsten & Lutz, Bernhard & Neumann, Dirk, 2024. "Cross validation based transfer learning for cross-sectional non-linear shrinkage: A data-driven approach in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(2), pages 670-685.
    4. Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    5. Wenyang Huang & Huiwen Wang & Shanshan Wang, 2021. "Dimension reduction of open-high-low-close data in candlestick chart based on pseudo-PCA," Papers 2103.16908, arXiv.org.
    6. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Modeling and forecasting dynamic conditional correlations with opening, high, low, and closing prices," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 308-321.
    7. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Attention to oil prices and its impact on the oil, gold and stock markets and their covariance," Energy Economics, Elsevier, vol. 120(C).
    8. Rafael Alves & Diego S. de Brito & Marcelo C. Medeiros & Ruy M. Ribeiro, 2023. "Forecasting Large Realized Covariance Matrices: The Benefits of Factor Models and Shrinkage," Papers 2303.16151, arXiv.org.
    9. Bongiorno, Christian & Challet, Damien, 2023. "Non-linear shrinkage of the price return covariance matrix is far from optimal for portfolio optimization," Finance Research Letters, Elsevier, vol. 52(C).
    10. Richard Luger, 2024. "Regularizing stock return covariance matrices via multiple testing of correlations," Papers 2407.09696, arXiv.org.
    11. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
    2. Ahmed, Shamim & Bu, Ziwen & Symeonidis, Lazaros & Tsvetanov, Daniel, 2023. "Which factor model? A systematic return covariation perspective," Journal of International Money and Finance, Elsevier, vol. 136(C).
    3. Grønborg, Niels S. & Lunde, Asger & Olesen, Kasper V. & Vander Elst, Harry, 2022. "Realizing correlations across asset classes," Journal of Financial Markets, Elsevier, vol. 59(PA).
    4. Niels S. Grønborg & Asger Lunde & Kasper V. Olesen & Harry Vander Elst, 2018. "Realizing Correlations Across Asset Classes," CREATES Research Papers 2018-37, Department of Economics and Business Economics, Aarhus University.
    5. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    6. Emilija Dzuverovic & Matteo Barigozzi, 2023. "Hierarchical DCC-HEAVY Model for High-Dimensional Covariance Matrices," Papers 2305.08488, arXiv.org, revised Jul 2024.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    9. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    10. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    11. Caldeira, João F & Moura, Guilherme Valle & Santos, André Alves Portela, 2013. "Seleção de carteiras utilizando o modelo Fama-French-Carhart," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
    12. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    13. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    14. Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
    15. Santos, André A.P. & Moura, Guilherme V., 2014. "Dynamic factor multivariate GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 606-617.
    16. Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
    17. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org, revised May 2024.
    18. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
    19. Hediger, Simon & Näf, Jeffrey, 2024. "Combining the MGHyp distribution with nonlinear shrinkage in modeling financial asset returns," Journal of Empirical Finance, Elsevier, vol. 77(C).
    20. repec:fgv:epgrbe:v:67:n:1:a:3 is not listed on IDEAS
    21. Moura, Guilherme V. & Santos, André A.P. & Ruiz, Esther, 2020. "Comparing high-dimensional conditional covariance matrices: Implications for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 118(C).

    More about this item

    Keywords

    Dynamic conditional correlations; Intraday data; Markowitz portfolio selection; Multivariate GARCH; Nonlinear shrinkage;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:138:y:2022:i:c:s0378426622000267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.