IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v346y2025i1d10.1007_s10479-024-06238-4.html
   My bibliography  Save this article

Model-based vs. agnostic methods for the prediction of time-varying covariance matrices

Author

Listed:
  • Jean-David Fermanian

    (ENSAE-CREST, Finance Department)

  • Benjamin Poignard

    (Osaka University, Graduate School of Economics
    RIKEN-AIP)

  • Panos Xidonas

    (ESSCA School of Management)

Abstract

This article is written in memory of Harry Markowitz, the founder of modern portfolio theory. We report a few human perspectives of his character, we review a large number of his contributions, published both in operations research and finance oriented journals, and we focus on one of the most critical, and still open, portfolio theory issues, the forecast of covariance matrices. Our contribution in this paper is placed exactly towards this direction. More specifically, we compare the performances of several approaches to predict the variance-covariance matrices of vectors of asset returns, through simulated and real data experiments: some dynamic models such as Dynamic Conditional Correlation (DCC) and C-vine GARCH on one side, and several agnostic methods (Average Oracle, usual “Sample” matrix) on the other side. The most robust methods seem to be DCC and the Average Oracle approaches.

Suggested Citation

  • Jean-David Fermanian & Benjamin Poignard & Panos Xidonas, 2025. "Model-based vs. agnostic methods for the prediction of time-varying covariance matrices," Annals of Operations Research, Springer, vol. 346(1), pages 511-548, March.
  • Handle: RePEc:spr:annopr:v:346:y:2025:i:1:d:10.1007_s10479-024-06238-4
    DOI: 10.1007/s10479-024-06238-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06238-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06238-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:346:y:2025:i:1:d:10.1007_s10479-024-06238-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.