IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v143y2016icp249-274.html
   My bibliography  Save this article

Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals

Author

Listed:
  • Couillet, Romain
  • Kammoun, Abla
  • Pascal, Frédéric

Abstract

A central limit theorem for bilinear forms of the type a∗CˆN(ρ)−1b, where a,b∈CN are unit norm deterministic vectors and CˆN(ρ) a robust-shrinkage estimator of scatter parametrized by ρ and built upon n independent elliptical vector observations, is presented. The fluctuations of a∗CˆN(ρ)−1b are found to be of order N−12 and to be the same as those of a∗SˆN(ρ)−1b for SˆN(ρ) a matrix of a theoretical tractable form. This result is exploited in a classical signal detection problem to provide an improved detector which is both robust to elliptical data observations (e.g., impulsive noise) and optimized across the shrinkage parameter ρ.

Suggested Citation

  • Couillet, Romain & Kammoun, Abla & Pascal, Frédéric, 2016. "Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 249-274.
  • Handle: RePEc:eee:jmvana:v:143:y:2016:i:c:p:249-274
    DOI: 10.1016/j.jmva.2015.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15002134
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Couillet, Romain & McKay, Matthew, 2014. "Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 99-120.
    3. Couillet, Romain & Pascal, Frédéric & Silverstein, Jack W., 2015. "The random matrix regime of Maronna’s M-estimator with elliptically distributed samples," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 56-78.
    4. Silverstein, J. W. & Choi, S. I., 1995. "Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 295-309, August.
    5. Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
    6. Silverstein, J. W. & Bai, Z. D., 1995. "On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 175-192, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Teng & Cheng, Xiuyuan & Singer, Amit, 2016. "Marčenko–Pastur law for Tyler’s M-estimator," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 114-123.
    2. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:143:y:2016:i:c:p:249-274. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.