IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v36y2023i2d10.1007_s10959-022-01193-x.html
   My bibliography  Save this article

The Limiting Spectral Distribution of Large-Dimensional General Information-Plus-Noise-Type Matrices

Author

Listed:
  • Huanchao Zhou

    (Northeast Normal University)

  • Zhidong Bai

    (Northeast Normal University)

  • Jiang Hu

    (Northeast Normal University)

Abstract

Let $$ X_{n} $$ X n be $$ n\times N $$ n × N random complex matrices, and let $$R_{n}$$ R n and $$T_{n}$$ T n be non-random complex matrices with dimensions $$n\times N$$ n × N and $$n\times n$$ n × n , respectively. We assume that the entries of $$ X_{n} $$ X n are normalized independent random variables satisfying the Lindeberg condition, $$ T_{n} $$ T n are nonnegative definite Hermitian matrices and commutative with $$R_nR_n^*$$ R n R n ∗ , i.e., $$T_{n}R_{n}R_{n}^{*}= R_{n}R_{n}^{*}T_{n} $$ T n R n R n ∗ = R n R n ∗ T n . The general information-plus-noise-type matrices are defined by $$C_{n}=\frac{1}{N}T_{n}^{\frac{1}{2}} \left( R_{n} +X_{n}\right) \left( R_{n}+X_{n}\right) ^{*}T_{n}^{\frac{1}{2}} $$ C n = 1 N T n 1 2 R n + X n R n + X n ∗ T n 1 2 . In this paper, we establish the limiting spectral distribution of the large-dimensional general information-plus-noise-type matrices $$C_{n}$$ C n . Specifically, we show that as n and N tend to infinity proportionally, the empirical distribution of the eigenvalues of $$C_{n}$$ C n converges weakly to a non-random probability distribution, which is characterized in terms of a system of equations of its Stieltjes transform.

Suggested Citation

  • Huanchao Zhou & Zhidong Bai & Jiang Hu, 2023. "The Limiting Spectral Distribution of Large-Dimensional General Information-Plus-Noise-Type Matrices," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1203-1226, June.
  • Handle: RePEc:spr:jotpro:v:36:y:2023:i:2:d:10.1007_s10959-022-01193-x
    DOI: 10.1007/s10959-022-01193-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-022-01193-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-022-01193-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. M. Johnstone & B. Nadler, 2017. "Roy’s largest root test under rank-one alternatives," Biometrika, Biometrika Trust, vol. 104(1), pages 181-193.
    2. Dozier, R. Brent & Silverstein, Jack W., 2007. "Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1099-1122, July.
    3. Yin, Y. Q., 1986. "Limiting spectral distribution for a class of random matrices," Journal of Multivariate Analysis, Elsevier, vol. 20(1), pages 50-68, October.
    4. Dozier, R. Brent & Silverstein, Jack W., 2007. "On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 678-694, April.
    5. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    6. Silverstein, J. W. & Choi, S. I., 1995. "Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 295-309, August.
    7. Bai, Z.D. & Zhang, L.X., 2010. "The limiting spectral distribution of the product of the Wigner matrix and a nonnegative definite matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1927-1949, October.
    8. Silverstein, J. W. & Bai, Z. D., 1995. "On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 175-192, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    2. Olivier Ledoit & Sandrine P�ch�, 2009. "Eigenvectors of some large sample covariance matrices ensembles," IEW - Working Papers 407, Institute for Empirical Research in Economics - University of Zurich.
    3. Paul, Debashis & Silverstein, Jack W., 2009. "No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 37-57, January.
    4. Li, Yuling & Zhou, Huanchao & Hu, Jiang, 2023. "The eigenvector LSD of information plus noise matrices and its application to linear regression model," Statistics & Probability Letters, Elsevier, vol. 197(C).
    5. M. Capitaine, 2013. "Additive/Multiplicative Free Subordination Property and Limiting Eigenvectors of Spiked Additive Deformations of Wigner Matrices and Spiked Sample Covariance Matrices," Journal of Theoretical Probability, Springer, vol. 26(3), pages 595-648, September.
    6. Bai, Zhidong & Wang, Chen, 2015. "A note on the limiting spectral distribution of a symmetrized auto-cross covariance matrix," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 333-340.
    7. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    8. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    9. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2014. "On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 215-228.
    10. Baik, Jinho & Silverstein, Jack W., 2006. "Eigenvalues of large sample covariance matrices of spiked population models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1382-1408, July.
    11. Merlevède, F. & Peligrad, M., 2016. "On the empirical spectral distribution for matrices with long memory and independent rows," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2734-2760.
    12. Pan, Guangming, 2010. "Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1330-1338, July.
    13. Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
    14. Couillet, Romain & Kammoun, Abla & Pascal, Frédéric, 2016. "Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 249-274.
    15. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
    16. Ningning Xia & Zhidong Bai, 2015. "Functional CLT of eigenvectors for large sample covariance matrices," Statistical Papers, Springer, vol. 56(1), pages 23-60, February.
    17. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
    18. Bai, Z.D. & Miao, Baiqi & Jin, Baisuo, 2007. "On limit theorem for the eigenvalues of product of two random matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 76-101, January.
    19. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    20. Couillet, Romain & McKay, Matthew, 2014. "Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 99-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:36:y:2023:i:2:d:10.1007_s10959-022-01193-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.