IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i4p678-694.html
   My bibliography  Save this article

On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices

Author

Listed:
  • Dozier, R. Brent
  • Silverstein, Jack W.

Abstract

Let Xn be nxN containing i.i.d. complex entries and unit variance (sum of variances of real and imaginary parts equals 1), [sigma]>0 constant, and Rn an nxN random matrix independent of Xn. Assume, almost surely, as n-->[infinity], the empirical distribution function (e.d.f.) of the eigenvalues of converges in distribution to a nonrandom probability distribution function (p.d.f.), and the ratio tends to a positive number. Then it is shown that, almost surely, the e.d.f. of the eigenvalues of converges in distribution. The limit is nonrandom and is characterized in terms of its Stieltjes transform, which satisfies a certain equation.

Suggested Citation

  • Dozier, R. Brent & Silverstein, Jack W., 2007. "On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 678-694, April.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:4:p:678-694
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00160-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    2. Silverstein, J. W. & Bai, Z. D., 1995. "On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 175-192, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Gen & Yang, Dan & Nobel, Andrew B. & Shen, Haipeng, 2016. "Supervised singular value decomposition and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 7-17.
    2. Guangming Pan & Jiti Gao & Yanrong Yang & Meihui Guo, 2015. "Cross-sectional Independence Test for a Class of Parametric Panel Data Models," Monash Econometrics and Business Statistics Working Papers 17/15, Monash University, Department of Econometrics and Business Statistics.
    3. Bai, Zhidong & Wang, Chen, 2015. "A note on the limiting spectral distribution of a symmetrized auto-cross covariance matrix," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 333-340.
    4. Shabalin, Andrey A. & Nobel, Andrew B., 2013. "Reconstruction of a low-rank matrix in the presence of Gaussian noise," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 67-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:4:p:678-694. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.