IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v12y2012i11p1651-1662.html
   My bibliography  Save this article

Robust and adaptive algorithms for online portfolio selection

Author

Listed:
  • Theodoros Tsagaris
  • Ajay Jasra
  • Niall Adams

Abstract

We present an online approach to portfolio selection. The motivation is within the context of algorithmic trading, which demands fast and recursive updates of portfolio allocations as new data arrives. In particular, we look at two online algorithms: Robust-Exponentially Weighted Least Squares (R-EWRLS) and a regularized Online minimum Variance algorithm (O-VAR). Our methods use simple ideas from signal processing and statistics, which are sometimes overlooked in the empirical financial literature. The two approaches are evaluated against benchmark allocation techniques using four real data sets. Our methods outperform the benchmark allocation techniques in these data sets in terms of both computational demand and financial performance.

Suggested Citation

  • Theodoros Tsagaris & Ajay Jasra & Niall Adams, 2012. "Robust and adaptive algorithms for online portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1651-1662, November.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:11:p:1651-1662
    DOI: 10.1080/14697688.2012.691175
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2012.691175
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ledoit, Olivier & Wolf, Michael, 2015. "Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:11:p:1651-1662. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.