IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v27yi2p238-251.html
   My bibliography  Save this article

Combining exponential smoothing forecasts using Akaike weights

Author

Listed:
  • Kolassa, Stephan

Abstract

Simple forecast combinations such as medians and trimmed or winsorized means are known to improve the accuracy of point forecasts, and Akaike's Information Criterion (AIC) has given rise to so-called Akaike weights, which have been used successfully to combine statistical models for inference and prediction in specialist fields, e.g., ecology and medicine. We examine combining exponential smoothing point and interval forecasts using weights derived from AIC, small-sample-corrected AIC and BIC on the M1 and M3 Competition datasets. Weighted forecast combinations perform better than forecasts selected using information criteria, in terms of both point forecast accuracy and prediction interval coverage. Simple combinations and weighted combinations do not consistently outperform one another, while simple combinations sometimes perform worse than single forecasts selected by information criteria. We find a tendency for a longer history to be associated with a better prediction interval coverage.

Suggested Citation

  • Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251, April.
  • Handle: RePEc:eee:intfor:v:27:y::i:2:p:238-251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(10)00103-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, pages 451-476.
    2. Zou, Hui & Yang, Yuhong, 2004. "Combining time series models for forecasting," International Journal of Forecasting, Elsevier, pages 69-84.
    3. Alysha M De Livera & Rob J Hyndman, 2009. "Forecasting time series with complex seasonal patterns using exponential smoothing," Monash Econometrics and Business Statistics Working Papers 15/09, Monash University, Department of Econometrics and Business Statistics.
    4. Md B. Billah & R.J. Hyndman & A.B. Koehler, 2003. "Empirical Information Criteria for Time Series Forecasting Model Selection," Monash Econometrics and Business Statistics Working Papers 2/03, Monash University, Department of Econometrics and Business Statistics.
    5. Rob J. Hyndman & Andrey V. Kostenko, 2007. "Minimum Sample Size requirements for Seasonal Forecasting Models," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, pages 12-15.
    6. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, pages 559-583.
    7. Makridakis, Spyros & Hibon, Michele & Lusk, Ed & Belhadjali, Moncef, 1987. "Confidence intervals: An empirical investigation of the series in the M-competition," International Journal of Forecasting, Elsevier, pages 489-508.
    8. Yuan, Zheng & Yang, Yuhong, 2005. "Combining Linear Regression Models: When and How?," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1202-1214, December.
    9. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, pages 439-454.
    10. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, pages 437-450.
    11. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, pages 1-13.
    12. Billah, Baki & King, Maxwell L. & Snyder, Ralph D. & Koehler, Anne B., 2006. "Exponential smoothing model selection for forecasting," International Journal of Forecasting, Elsevier, pages 239-247.
    13. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, November.
    14. Akaike, Hirotugu, 1981. "Likelihood of a model and information criteria," Journal of Econometrics, Elsevier, pages 3-14.
    15. Taylor, James W., 2008. "Exponentially weighted information criteria for selecting among forecasting models," International Journal of Forecasting, Elsevier, pages 513-524.
    16. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, pages 439-454.
    17. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    18. Goodwin, Paul & Lawton, Richard, 1999. "On the asymmetry of the symmetric MAPE," International Journal of Forecasting, Elsevier, pages 405-408.
    19. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, pages 637-666.
    20. Jose, Victor Richmond R. & Winkler, Robert L., 2008. "Simple robust averages of forecasts: Some empirical results," International Journal of Forecasting, Elsevier, pages 163-169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Medel, 2016. "Forecasting Chilean Inflation with the Hybrid New Keynesian Phillips Curve: Globalisation, Combination, and Accuracy," Working Papers Central Bank of Chile 791, Central Bank of Chile.
    2. repec:eee:ejores:v:264:y:2018:i:3:p:967-977 is not listed on IDEAS
    3. Medel, Carlos A., 2015. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," MPRA Paper 67081, University Library of Munich, Germany.
    4. Barrow, Devon K. & Kourentzes, Nikolaos, 2016. "Distributions of forecasting errors of forecast combinations: Implications for inventory management," International Journal of Production Economics, Elsevier, vol. 177(C), pages 24-33.
    5. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, pages 60-74.
    6. Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
    7. Markopoulou, Chrysi E. & Skintzi, Vasiliki D. & Refenes, Apostolos-Paul N., 2016. "Realized hedge ratio: Predictability and hedging performance," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 121-133.
    8. Kourentzes, Nikolaos & Petropoulos, Fotios, 2016. "Forecasting with multivariate temporal aggregation: The case of promotional modelling," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 145-153.
    9. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, pages 291-302.
    10. Markopoulou, Chryssa & Skintzi, Vasiliki & Refenes, Apostolos, 2016. "On the predictability of model-free implied correlation," International Journal of Forecasting, Elsevier, pages 527-547.
    11. Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y::i:2:p:238-251. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.