IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2003-2.html
   My bibliography  Save this paper

Empirical Information Criteria for Time Series Forecasting Model Selection

Author

Listed:
  • Md B. Billah
  • R.J. Hyndman

    ()

  • A.B. Koehler

Abstract

In this paper, we propose a new Empirical Information Criterion (EIC) for model selection which penalizes the likelihood of the data by a function of the number of parameters in the model. It is designed to be used where there are a large number of time series to be forecast. However, a bootstrap version of the EIC can be used where there is a single time series to be forecast. The EIC provides a data-driven model selection tool that can be tuned to the particular forecasting task. We compare the EIC with other model selection criteria including Akaike's Information Criterion (AIC) and Schwarz's Bayesian Information Criterion (BIC). The comparisons show that for the M3 forecasting competition data, the EIC outperforms both the AIC and BIC, particularly for longer forecast horizons. We also compare the criteria on simulated data and find that the EIC does better than existing criteria in that case also.

Suggested Citation

  • Md B. Billah & R.J. Hyndman & A.B. Koehler, 2003. "Empirical Information Criteria for Time Series Forecasting Model Selection," Monash Econometrics and Business Statistics Working Papers 2/03, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2003-2
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2003/wp2-03.pdf
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251, April.
    2. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    3. Taylor, James W., 2008. "Exponentially weighted information criteria for selecting among forecasting models," International Journal of Forecasting, Elsevier, vol. 24(3), pages 513-524.

    More about this item

    Keywords

    Exponential smoothing; forecasting; information criteria; M3 competition; model selection.;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2003-2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang) or (Joanne Lustig). General contact details of provider: http://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.