IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2010-10.html
   My bibliography  Save this paper

Automatic forecasting with a modified exponential smoothing state space framework

Author

Listed:
  • Alysha M De Livera

    ()

Abstract

A new automatic forecasting procedure is proposed based on a recent exponential smoothing framework which incorporates a Box-Cox transformation and ARMA residual corrections. The procedure is complete with well-defined methods for initialization, estimation, likelihood evaluation, and analytical derivation of point and interval predictions under a Gaussian error assumption. The algorithm is examined extensively by applying it to single seasonal and non-seasonal time series from the M and the M3 competitions, and is shown to provide competitive out-of-sample forecast accuracy compared to the best methods in these competitions and to the traditional exponential smoothing framework. The proposed algorithm can be used as an alternative to existing automatic forecasting procedures in modeling single seasonal and non-seasonal time series. In addition, it provides the new option of automatic modeling of multiple seasonal time series which cannot be handled using any of the existing automatic forecasting procedures. The proposed automatic procedure is further illustrated by applying it to two multiple seasonal time series involving call center data and electricity demand data.

Suggested Citation

  • Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2010-10
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2010/wp10-10.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Alysha M De Livera & Rob J Hyndman, 2009. "Forecasting time series with complex seasonal patterns using exponential smoothing," Monash Econometrics and Business Statistics Working Papers 15/09, Monash University, Department of Econometrics and Business Statistics.
    2. Everette S. Gardner, Jr. & Ed. Mckenzie, 1985. "Forecasting Trends in Time Series," Management Science, INFORMS, vol. 31(10), pages 1237-1246, October.
    3. Hyndman, R.J. & Koehler, A.B. & Ord, J.K. & Snyder, R.D., 2001. "Prediction Intervals for Exponential Smoothing State Space Models," Monash Econometrics and Business Statistics Working Papers 11/01, Monash University, Department of Econometrics and Business Statistics.
    4. Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
    5. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    6. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    7. Anne B. Koehler & Rob J. Hyndman & Ralph D. Snyder & J. Keith Ord, 2005. "Prediction intervals for exponential smoothing using two new classes of state space models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(1), pages 17-37.
    8. Tashman, Leonard J. & Leach, Michael L., 1991. "Automatic forecasting software: A survey and evaluation," International Journal of Forecasting, Elsevier, vol. 7(2), pages 209-230, August.
    9. Makridakis, Spyros & Chatfield, Chris & Hibon, Michele & Lawrence, Michael & Mills, Terence & Ord, Keith & Simmons, LeRoy F., 1993. "The M2-competition: A real-time judgmentally based forecasting study," International Journal of Forecasting, Elsevier, vol. 9(1), pages 5-22, April.
    10. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    11. Geriner, Pamela Texter & Ord, J. Keith, 1991. "Automatic forecasting using explanatory variables: A comparative study," International Journal of Forecasting, Elsevier, vol. 7(2), pages 127-140, August.
    12. Ord, J.K. & Koehler, A. & Snyder, R.D., 1995. "Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models," Monash Econometrics and Business Statistics Working Papers 4/95, Monash University, Department of Econometrics and Business Statistics.
    13. Muhammad Akram & Rob J Hyndman & J. Keith Ord, 2008. "Exponential smoothing and non-negative data," Working Papers 2008-003, The George Washington University, Department of Economics, Research Program on Forecasting.
    14. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    15. Md B. Billah & R.J. Hyndman & A.B. Koehler, 2003. "Empirical Information Criteria for Time Series Forecasting Model Selection," Monash Econometrics and Business Statistics Working Papers 2/03, Monash University, Department of Econometrics and Business Statistics.
    16. Rob Hyndman & Muhammad Akram & Blyth Archibald, 2008. "The admissible parameter space for exponential smoothing models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 407-426, June.
    17. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    18. Robert R. Andrawis & Amir F. Atiya, 2009. "A new Bayesian formulation for Holt's exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 218-234.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Exponential smoothing; state space models; automatic forecasting; Box-Cox transformation; residual adjustment; multiple seasonality; time series;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2010-10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang) or (Joanne Lustig). General contact details of provider: http://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.