IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v37y2019i4p681-695.html
   My bibliography  Save this article

R2 Bounds for Predictive Models: What Univariate Properties Tell us About Multivariate Predictability

Author

Listed:
  • James Mitchell
  • Donald Robertson
  • Stephen Wright

Abstract

A long-standing puzzle in macroeconomic forecasting has been that a wide variety of multivariate models have struggled to out-predict univariate models consistently. We seek an explanation for this puzzle in terms of population properties. We derive bounds for the predictive R2 of the true, but unknown, multivariate model from univariate ARMA parameters alone. These bounds can be quite tight, implying little forecasting gain even if we knew the true multivariate model. We illustrate using CPI inflation data. Supplementary materials for this article are available online.

Suggested Citation

  • James Mitchell & Donald Robertson & Stephen Wright, 2019. "R2 Bounds for Predictive Models: What Univariate Properties Tell us About Multivariate Predictability," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 681-695, October.
  • Handle: RePEc:taf:jnlbes:v:37:y:2019:i:4:p:681-695
    DOI: 10.1080/07350015.2017.1415909
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2017.1415909
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2017.1415909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    2. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    3. Joshua C. C. Chan & Gary Koop & Simon M. Potter, 2013. "A New Model of Trend Inflation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 94-106, January.
    4. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    5. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    6. Lars Peter Hansen & Thomas J. Sargent, 2013. "Recursive Models of Dynamic Linear Economies," Economics Books, Princeton University Press, edition 1, number 10141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Beatriz Galvão & James Mitchell, 2019. "Measuring Data Uncertainty: An Application using the Bank of England's "Fan Charts" for Historical GDP Growth," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-08, Economic Statistics Centre of Excellence (ESCoE).
    2. Mihaela-Eugenia VASILACHE, 2018. "Forecasting the Trend of Art Market," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 6(1), pages 82-93, June.
    3. Zhang, Bo & Chan, Joshua C.C. & Cross, Jamie L., 2020. "Stochastic volatility models with ARMA innovations: An application to G7 inflation forecasts," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1318-1328.
    4. Tommaso Proietti, 2021. "Predictability, real time estimation, and the formulation of unobserved components models," Econometric Reviews, Taylor & Francis Journals, vol. 40(5), pages 433-454, April.
    5. Julien Champagne & Guillaume Poulin‐Bellisle & Rodrigo Sekkel, 2020. "Introducing the Bank of Canada staff economic projections database," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 114-129, January.
    6. Duc Do, Nguyen, 2024. "Money/asset ratio as a predictor of inflation," The Quarterly Review of Economics and Finance, Elsevier, vol. 97(C).
    7. Nguyen Duc Do, 2025. "Using a Wage–Price‐Setting Model to Forecast US Inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 803-832, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
    2. Alex, Dony, 2021. "Anchoring of inflation expectations in large emerging economies," The Journal of Economic Asymmetries, Elsevier, vol. 23(C).
    3. Yunjong Eo & Luis Uzeda & Benjamin Wong, 2023. "Understanding trend inflation through the lens of the goods and services sectors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 751-766, August.
    4. De Schryder, Selien & Peersman, Gert & Wauters, Joris, 2020. "Wage indexation and the monetary policy regime," Journal of Macroeconomics, Elsevier, vol. 63(C).
    5. Mónica Correa-López & Matías Pacce & Kathi Schlepper, 2019. "Exploring trend inFLation dynamics in Euro Area countries," Working Papers 1909, Banco de España.
    6. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
    7. Panovska, Irina & Ramamurthy, Srikanth, 2022. "Decomposing the output gap with inflation learning," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    8. Niko Hauzenberger & Daniel Kaufmann & Rebecca Stuart & Cédric Tille, 2022. "What Drives Long-Term Interest Rates? Evidence from the Entire Swiss Franc History 1852-2020," IRENE Working Papers 22-03, IRENE Institute of Economic Research.
    9. Kamber, Güneş & Wong, Benjamin, 2020. "Global factors and trend inflation," Journal of International Economics, Elsevier, vol. 122(C).
    10. Guido Ascari & Argia M. Sbordone, 2014. "The Macroeconomics of Trend Inflation," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 679-739, September.
    11. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    12. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    13. McNeil, James, 2023. "Monetary policy and the term structure of inflation expectations with information frictions," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    14. Behera, Harendra Kumar & Patra, Michael Debabrata, 2022. "Measuring trend inflation in India," Journal of Asian Economics, Elsevier, vol. 80(C).
    15. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    16. Chin, Kuo-Hsuan & Li, Xue, 2019. "Bayesian forecast combination in VAR-DSGE models," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 278-298.
    17. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    18. Claudio Borio & Piti Disyatat & Mikael Juselius & Phurichai Rungcharoenkitkul, 2022. "Why So Low for So Long? A Long-Term View of Real Interest Rates," International Journal of Central Banking, International Journal of Central Banking, vol. 18(3), pages 47-87, September.
    19. Patrick C. Higgins, 2014. "GDPNow: A Model for GDP \"Nowcasting\"," FRB Atlanta Working Paper 2014-7, Federal Reserve Bank of Atlanta.
    20. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:37:y:2019:i:4:p:681-695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.