IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Nonlinear Panel Data Model of Cross-Sectional Dependence

  • James Mitchell

    ()

  • George Kapetanios
  • Yongcheol Shin

This paper proposes a nonlinear panel data model which can generate endogenously both `weak' and `strong' cross-sectional dependence. The model's distinguishing characteristic is that a given agent's behaviour is influenced by an aggregation of the views or actions of those around them. The model allows for considerable flexibility in terms of the genesis of this herding or clustering type behaviour. At an econometric level, the model is shown to nest various extant dynamic panel data models. These include panel AR models, spatial models, which accommodate weak dependence only, and panel models where cross-sectional averages or factors exogenously generate strong, but not weak, cross sectional dependence. An important implication is that the appropriate model for the aggregate series becomes intrinsically nonlinear, due to the clustering behaviour, and thus requires the disaggregates to be simultaneously considered with the aggregate. We provide the associated asymptotic theory for estimation and inference. This is supplemented with Monte Carlo studies and two empirical applications which indicate the utility of our proposed model as both a structural and reduced form vehicle to model different types of cross-sectional dependence, including evolving clusters.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.le.ac.uk/economics/research/repec/lec/leecon/dp12-01.pdf
Download Restriction: no

Paper provided by Department of Economics, University of Leicester in its series Discussion Papers in Economics with number 12/01.

as
in new window

Length:
Date of creation: Jan 2012
Date of revision:
Handle: RePEc:lec:leecon:12/01
Contact details of provider: Postal: Department of Economics University of Leicester, University Road. Leicester. LE1 7RH. UK
Phone: +44 (0)116 252 2887
Fax: +44 (0)116 252 2908
Web page: http://www2.le.ac.uk/departments/economicsEmail:


More information through EDIRC

Order Information: Web: http://www2.le.ac.uk/departments/economics/research/discussion-papers Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  2. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
  3. Offer Lieberman, 2012. "A similarity‐based approach to time‐varying coefficient non‐stationary autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 484-502, 05.
  4. Christopher D Carroll, 2002. "Macroeconomic Expectations of Households and Professional Forecasters," Economics Working Paper Archive 477, The Johns Hopkins University,Department of Economics.
  5. Itzhak Gilboa & Offer Lieberman & David Schmeidler, 2004. "Empirical Similarity," Levine's Bibliography 122247000000000684, UCLA Department of Economics.
  6. M. Hashem Pesaran, 2004. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," CESifo Working Paper Series 1331, CESifo Group Munich.
  7. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
  8. Timmermann, Allan, 1994. "Can Agents Learn to Form Rational Expectations? Some Results on Convergence and Stability of Learning in the UK Stock Market," Economic Journal, Royal Economic Society, vol. 104(425), pages 777-97, July.
  9. Korniotis, George M., 2010. "Estimating Panel Models With Internal and External Habit Formation," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 145-158.
  10. Gonzalo, Jesus & Wolf, Michael, 2005. "Subsampling inference in threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 127(2), pages 201-224, August.
  11. Narasimhan Jegadeesh & Woojin Kim, 2010. "Do Analysts Herd? An Analysis of Recommendations and Market Reactions," Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 901-937, February.
  12. Richard W. Sias, 2004. "Institutional Herding," Review of Financial Studies, Society for Financial Studies, vol. 17(1), pages 165-206.
  13. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2009. "Weak and Strong Cross Section Dependence and Estimation of Large Panels," CESifo Working Paper Series 2689, CESifo Group Munich.
  14. Alexander Chudik & M. Hashem Pesaran, 2007. "Infinite Dimensional VARs and Factor Models," CESifo Working Paper Series 2176, CESifo Group Munich.
  15. Roger E. A. Farmer, 2009. "Animal Spirits: How Human Psychology Drives the Economy, and Why it Matters for Global Capitalism," The Economic Record, The Economic Society of Australia, vol. 85(270), pages 357-358, 09.
  16. Chevillon, Guillaume & Massmann, Michael & Mavroeidis, Sophocles, 2010. "Inference in models with adaptive learning," Journal of Monetary Economics, Elsevier, vol. 57(3), pages 341-351, April.
  17. Tweedie, Richard L., 1975. "Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space," Stochastic Processes and their Applications, Elsevier, vol. 3(4), pages 385-403, October.
  18. Souleles, Nicholas S, 2004. "Expectations, Heterogeneous Forecast Errors, and Consumption: Micro Evidence from the Michigan Consumer Sentiment Surveys," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(1), pages 39-72, February.
  19. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
  20. Snehal Banerjee & Ilan Kremer, 2010. "Disagreement and Learning: Dynamic Patterns of Trade," Journal of Finance, American Finance Association, vol. 65(4), pages 1269-1302, 08.
  21. Lieberman, Offer, 2010. "Asymptotic Theory For Empirical Similarity Models," Econometric Theory, Cambridge University Press, vol. 26(04), pages 1032-1059, August.
  22. Kapetanios, G., 1999. "Model Selection in Threshold Models," Cambridge Working Papers in Economics 9906, Faculty of Economics, University of Cambridge.
  23. Devenow, Andrea & Welch, Ivo, 1996. "Rational herding in financial economics," European Economic Review, Elsevier, vol. 40(3-5), pages 603-615, April.
  24. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  25. Gregory, Allan W & Smith, Gregor W & Yetman, James, 2001. "Testing for Forecast Consensus," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 34-43, January.
  26. David Hirshleifer & Siew Hong Teoh, 2003. "Herd Behaviour and Cascading in Capital Markets: a Review and Synthesis," European Financial Management, European Financial Management Association, vol. 9(1), pages 25-66.
  27. Banerjee, Abhijit V, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, MIT Press, vol. 107(3), pages 797-817, August.
  28. Kapetanios, George, 2010. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
  29. Gayer Gabrielle & Gilboa Itzhak & Lieberman Offer, 2007. "Rule-Based and Case-Based Reasoning in Housing Prices," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 7(1), pages 1-37, April.
  30. Yu, Ping, 2012. "Likelihood estimation and inference in threshold regression," Journal of Econometrics, Elsevier, vol. 167(1), pages 274-294.
  31. Gilboa, Itzhak & Lieberman, Offer & Schmeidler, David, 2011. "A similarity-based approach to prediction," Journal of Econometrics, Elsevier, vol. 162(1), pages 124-131, May.
  32. Trueman, Brett, 1994. "Analyst Forecasts and Herding Behavior," Review of Financial Studies, Society for Financial Studies, vol. 7(1), pages 97-124.
  33. Snehal Banerjee & Ron Kaniel & Ilan Kremer, 2009. "Price Drift as an Outcome of Differences in Higher-Order Beliefs," Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3707-3734, September.
  34. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:lec:leecon:12/01. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mrs. Alexandra Mazzuoccolo)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.