IDEAS home Printed from https://ideas.repec.org/p/lec/leecon/12-01.html
   My bibliography  Save this paper

A Nonlinear Panel Data Model of Cross-Sectional Dependence

Author

Listed:
  • James Mitchell

    ()

  • George Kapetanios
  • Yongcheol Shin

Abstract

This paper proposes a nonlinear panel data model which can generate endogenously both `weak' and `strong' cross-sectional dependence. The model's distinguishing characteristic is that a given agent's behaviour is influenced by an aggregation of the views or actions of those around them. The model allows for considerable flexibility in terms of the genesis of this herding or clustering type behaviour. At an econometric level, the model is shown to nest various extant dynamic panel data models. These include panel AR models, spatial models, which accommodate weak dependence only, and panel models where cross-sectional averages or factors exogenously generate strong, but not weak, cross sectional dependence. An important implication is that the appropriate model for the aggregate series becomes intrinsically nonlinear, due to the clustering behaviour, and thus requires the disaggregates to be simultaneously considered with the aggregate. We provide the associated asymptotic theory for estimation and inference. This is supplemented with Monte Carlo studies and two empirical applications which indicate the utility of our proposed model as both a structural and reduced form vehicle to model different types of cross-sectional dependence, including evolving clusters.

Suggested Citation

  • James Mitchell & George Kapetanios & Yongcheol Shin, 2012. "A Nonlinear Panel Data Model of Cross-Sectional Dependence," Discussion Papers in Economics 12/01, Department of Economics, University of Leicester.
  • Handle: RePEc:lec:leecon:12/01
    as

    Download full text from publisher

    File URL: http://www.le.ac.uk/economics/research/repec/lec/leecon/dp12-01.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Narasimhan Jegadeesh & Woojin Kim, 2010. "Do Analysts Herd? An Analysis of Recommendations and Market Reactions," Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 901-937, February.
    2. Yu, Ping, 2012. "Likelihood estimation and inference in threshold regression," Journal of Econometrics, Elsevier, vol. 167(1), pages 274-294.
    3. Gilboa, Itzhak & Lieberman, Offer & Schmeidler, David, 2011. "A similarity-based approach to prediction," Journal of Econometrics, Elsevier, vol. 162(1), pages 124-131, May.
    4. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    5. Trueman, Brett, 1994. "Analyst Forecasts and Herding Behavior," Review of Financial Studies, Society for Financial Studies, vol. 7(1), pages 97-124.
    6. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    7. Kapetanios, George, 2010. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
    8. Tweedie, Richard L., 1975. "Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space," Stochastic Processes and their Applications, Elsevier, vol. 3(4), pages 385-403, October.
    9. Gayer Gabrielle & Gilboa Itzhak & Lieberman Offer, 2007. "Rule-Based and Case-Based Reasoning in Housing Prices," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 7(1), pages 1-37, April.
    10. Snehal Banerjee & Ron Kaniel & Ilan Kremer, 2009. "Price Drift as an Outcome of Differences in Higher-Order Beliefs," Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3707-3734, September.
    11. Christopher D. Carroll, 2003. "Macroeconomic Expectations of Households and Professional Forecasters," The Quarterly Journal of Economics, Oxford University Press, vol. 118(1), pages 269-298.
    12. Chudik, Alexander & Pesaran, M. Hashem, 2011. "Infinite-dimensional VARs and factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 4-22, July.
    13. George A. Akerlof, 2009. "How Human Psychology Drives the Economy and Why It Matters," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(5), pages 1175-1175.
    14. Souleles, Nicholas S, 2004. "Expectations, Heterogeneous Forecast Errors, and Consumption: Micro Evidence from the Michigan Consumer Sentiment Surveys," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(1), pages 39-72, February.
    15. Roger E. A. Farmer, 2009. "Animal Spirits: How Human Psychology Drives the Economy, and Why it Matters for Global Capitalism," The Economic Record, The Economic Society of Australia, vol. 85(270), pages 357-358, September.
    16. David Hirshleifer & Siew Hong Teoh, 2003. "Herd Behaviour and Cascading in Capital Markets: a Review and Synthesis," European Financial Management, European Financial Management Association, vol. 9(1), pages 25-66.
    17. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    18. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    19. Chevillon, Guillaume & Massmann, Michael & Mavroeidis, Sophocles, 2010. "Inference in models with adaptive learning," Journal of Monetary Economics, Elsevier, vol. 57(3), pages 341-351, April.
    20. Timmermann, Allan, 1994. "Can Agents Learn to Form Rational Expectations? Some Results on Convergence and Stability of Learning in the UK Stock Market," Economic Journal, Royal Economic Society, vol. 104(425), pages 777-797, July.
    21. Itzhak Gilboa & Offer Lieberman & David Schmeidler, 2006. "Empirical Similarity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 433-444, August.
    22. Gonzalo, Jesus & Wolf, Michael, 2005. "Subsampling inference in threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 127(2), pages 201-224, August.
    23. Snehal Banerjee & Ilan Kremer, 2010. "Disagreement and Learning: Dynamic Patterns of Trade," Journal of Finance, American Finance Association, vol. 65(4), pages 1269-1302, August.
    24. Lieberman, Offer, 2010. "Asymptotic Theory For Empirical Similarity Models," Econometric Theory, Cambridge University Press, vol. 26(04), pages 1032-1059, August.
    25. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    26. Richard W. Sias, 2004. "Institutional Herding," Review of Financial Studies, Society for Financial Studies, vol. 17(1), pages 165-206.
    27. Offer Lieberman, 2012. "A similarity‐based approach to time‐varying coefficient non‐stationary autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 484-502, May.
    28. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    29. Kapetanios, G., 1999. "Model Selection in Threshold Models," Cambridge Working Papers in Economics 9906, Faculty of Economics, University of Cambridge.
    30. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    31. Gregory, Allan W & Smith, Gregor W & Yetman, James, 2001. "Testing for Forecast Consensus," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 34-43, January.
    32. Korniotis, George M., 2010. "Estimating Panel Models With Internal and External Habit Formation," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 145-158.
    33. Devenow, Andrea & Welch, Ivo, 1996. "Rational herding in financial economics," European Economic Review, Elsevier, vol. 40(3-5), pages 603-615, April.
    34. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    35. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, Oxford University Press, vol. 107(3), pages 797-817.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafiq, Shuddhasattwa & Salim, Ruhul & Nielsen, Ingrid, 2016. "Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies," Energy Economics, Elsevier, vol. 56(C), pages 20-28.
    2. repec:spr:metrik:v:80:y:2017:i:6:d:10.1007_s00184-017-0627-y is not listed on IDEAS
    3. Frohm, Erik & Gunnella, Vanessa, 2017. "Sectoral interlinkages in global value chains: spillovers and network effects," Working Paper Series 2064, European Central Bank.
    4. Hacioglu Hoke, Sinem & Kapetanios, George, 2017. "Common correlated effect cross-sectional dependence corrections for non-linear conditional mean panel models," Bank of England working papers 683, Bank of England.
    5. Efthymios G. Tsionas & Panayotis G. Michaelides, 2016. "A Spatial Stochastic Frontier Model with Spillovers: Evidence for Italian Regions," Scottish Journal of Political Economy, Scottish Economic Society, vol. 63(3), pages 243-257, July.
    6. Kapetanios, G. & Mitchell, J. & Price, S. & Fawcett, N., 2015. "Generalised density forecast combinations," Journal of Econometrics, Elsevier, vol. 188(1), pages 150-165.
    7. Coe, Patrick J & Vahey, Shaun P., 2014. "Probablistic Prediction of the US Great Recession with Historical Expert," EMF Research Papers 06, Economic Modelling and Forecasting Group.
    8. Tong, Howell, 2015. "Threshold models in time series analysis—Some reflections," Journal of Econometrics, Elsevier, vol. 189(2), pages 485-491.

    More about this item

    Keywords

    Nonlinear Panel Data Model; Clustering; Cross-section Dependence; Factor Models; Monte Carlo Simulations; Application to Stock Returns and Inflation Expectations;

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lec:leecon:12/01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mrs. Alexandra Mazzuoccolo). General contact details of provider: http://edirc.repec.org/data/deleiuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.