IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00481229.html

Rule-Based and Case-Based Reasoning in Housing Prices

Author

Listed:
  • Itzhak Gilboa

    (TAU - Tel Aviv University)

  • Gabrielle Gayer

    (TAU - Tel Aviv University)

  • O. Lieberman

Abstract

People reason about real-estate prices both in terms of general rules and in terms of analogies to similar cases. We propose to empirically test which mode of reasoning fits the data better. To this end, we develop the statistical techniques required for the estimation of the case-based model. It is hypothesized that case-based reasoning will have relatively more explanatory power in databases of rental apartments, whereas rule-based reasoning will have a relative advantage in sales data. We motivate this hypothesis on theoretical grounds, and find empirical support for it by comparing the two statistical techniques (rule-based and case-based) on two databases (rentals and sales).

Suggested Citation

  • Itzhak Gilboa & Gabrielle Gayer & O. Lieberman, 2007. "Rule-Based and Case-Based Reasoning in Housing Prices," Post-Print hal-00481229, HAL.
  • Handle: RePEc:hal:journl:hal-00481229
    DOI: 10.2202/1935-1704.1284
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Todd Guilfoos & Andreas Duus Pape, 2020. "Estimating Case-Based Learning," Games, MDPI, vol. 11(3), pages 1-25, September.
    2. Kapetanios, George & Mitchell, James & Shin, Yongcheol, 2014. "A nonlinear panel data model of cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 179(2), pages 134-157.
    3. Itzhak Gilboa & Offer Lieberman & David Schmeidler, 2012. "Empirical Similarity," World Scientific Book Chapters, in: Case-Based Predictions An Axiomatic Approach to Prediction, Classification and Statistical Learning, chapter 9, pages 211-243, World Scientific Publishing Co. Pte. Ltd..
    4. Annie Liang, 2019. "Games of Incomplete Information Played By Statisticians," Papers 1910.07018, arXiv.org, revised Jul 2020.
    5. Annie Liang, 2016. "Games of Incomplete Information Played by Statisticians," PIER Working Paper Archive 16-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Jan 2016.
    6. Brit Grosskopf & Rajiv Sarin & Elizabeth Watson, 2015. "An experiment on case-based decision making," Theory and Decision, Springer, vol. 79(4), pages 639-666, December.
    7. Baddeley, M., 2011. "Social Influence and Household Decision-Making: A Behavioural Analysis of Housing Demand," Cambridge Working Papers in Economics 1120, Faculty of Economics, University of Cambridge.
    8. Han Bleichrodt & Martin Filko & Amit Kothiyal & Peter P. Wakker, 2017. "Making Case-Based Decision Theory Directly Observable," American Economic Journal: Microeconomics, American Economic Association, vol. 9(1), pages 123-151, February.
    9. Gilboa, Itzhak & Lieberman, Offer & Schmeidler, David, 2011. "A similarity-based approach to prediction," Journal of Econometrics, Elsevier, vol. 162(1), pages 124-131, May.
    10. Vasyl Golosnoy & Yarema Okhrin & Michael W. M. Roos, 2025. "Empirical similarity for revealing the US interest rate policy: modeling case-based decisions of the FOMC," Empirical Economics, Springer, vol. 68(6), pages 2799-2828, June.
    11. Itzhak Gilboa, 2010. "Questions in Decision Theory," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 1-19, September.
    12. Todd Guilfoos & Andreas Pape, 2016. "Predicting human cooperation in the Prisoner’s Dilemma using case-based decision theory," Theory and Decision, Springer, vol. 80(1), pages 1-32, January.
    13. Pape, Andreas & Kurtz, Kenneth, 2013. "Evaluating Case-based Decision Theory: Predicting Empirical Patterns of Human Classification Learning (Extensions)," MPRA Paper 45206, University Library of Munich, Germany.
    14. Keita Kinjo & Shinya Sugawara, 2014. "An Empirical Analysis for a Case-based Decision to Watch Japanese TV dramas," CIRJE F-Series CIRJE-F-940, CIRJE, Faculty of Economics, University of Tokyo.
    15. Jamol Bahromov, 2022. "Regime-switching empirical similarity model: a comparison with baseline models," Empirical Economics, Springer, vol. 63(5), pages 2655-2674, November.
    16. Oscar Melo & Carlos Melo & Jorge Mateu, 2015. "Distance-based beta regression for prediction of mutual funds," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 83-106, January.
    17. Teitelbaum, Joshua C., 2013. "Asymmetric empirical similarity," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 346-351.
    18. M. Huang & A. D. Pape, 2020. "The Impact of Online Consumer Reviews on Online Sales: The Case-Based Decision Theory Approach," Journal of Consumer Policy, Springer, vol. 43(3), pages 463-490, September.
    19. Pape, Andreas Duus & Kurtz, Kenneth J., 2013. "Evaluating case-based decision theory: Predicting empirical patterns of human classification learning," Games and Economic Behavior, Elsevier, vol. 82(C), pages 52-65.
    20. Radoc, Benjamin, 2018. "Case-based investing: Stock selection under uncertainty," Journal of Behavioral and Experimental Finance, Elsevier, vol. 17(C), pages 53-59.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • R1 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00481229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.