IDEAS home Printed from
   My bibliography  Save this article

Evaluating case-based decision theory: Predicting empirical patterns of human classification learning


  • Pape, Andreas Duus
  • Kurtz, Kenneth J.


We introduce a computer program which calculates an agentʼs optimal behavior according to case-based decision theory (Gilboa and Schmeidler, 1995) and use it to test CBDT against a benchmark set of problems from the psychological literature on human classification learning (Shepard et al., 1961). This allows us to evaluate the efficacy of CBDT as an account of human decision-making on this set of problems.

Suggested Citation

  • Pape, Andreas Duus & Kurtz, Kenneth J., 2013. "Evaluating case-based decision theory: Predicting empirical patterns of human classification learning," Games and Economic Behavior, Elsevier, vol. 82(C), pages 52-65.
  • Handle: RePEc:eee:gamebe:v:82:y:2013:i:c:p:52-65
    DOI: 10.1016/j.geb.2013.06.010

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Gilboa, Itzhak & Schmeidler, David, 1996. "Case-Based Optimization," Games and Economic Behavior, Elsevier, vol. 15(1), pages 1-26, July.
    2. Billot, Antoine & Gilboa, Itzhak & Schmeidler, David, 2008. "Axiomatization of an exponential similarity function," Mathematical Social Sciences, Elsevier, vol. 55(2), pages 107-115, March.
    3. David K. Levine & Drew Fudenberg, 2006. "A Dual-Self Model of Impulse Control," American Economic Review, American Economic Association, vol. 96(5), pages 1449-1476, December.
    4. Golosnoy, Vasyl & Okhrin, Yarema, 2008. "General uncertainty in portfolio selection: A case-based decision approach," Journal of Economic Behavior & Organization, Elsevier, vol. 67(3-4), pages 718-734, September.
    5. Gayer Gabrielle & Gilboa Itzhak & Lieberman Offer, 2007. "Rule-Based and Case-Based Reasoning in Housing Prices," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 7(1), pages 1-37, April.
    6. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    7. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    8. David Laibson, 1997. "Golden Eggs and Hyperbolic Discounting," The Quarterly Journal of Economics, Oxford University Press, vol. 112(2), pages 443-478.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Todd Guilfoos & Andreas Duus Pape, 2016. "Predicting human cooperation in the Prisoner’s Dilemma using case-based decision theory," Theory and Decision, Springer, vol. 80(1), pages 1-32, January.
    2. Han Bleichrodt & Martin Filko & Amit Kothiyal & Peter P. Wakker, 2017. "Making Case-Based Decision Theory Directly Observable," American Economic Journal: Microeconomics, American Economic Association, vol. 9(1), pages 123-151, February.

    More about this item


    Case-based decision theory; Human cognition; Learning; Agent-based computational economics; Psychology; Cognitive science;

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:82:y:2013:i:c:p:52-65. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.