IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdps/192016.html
   My bibliography  Save this paper

Point, interval and density forecasts of exchange rates with time-varying parameter models

Author

Listed:
  • Abbate, Angela
  • Marcellino, Massimiliano

Abstract

We explore whether modelling parameter time variation improves the point, interval and density forecasts of nine major exchange rates vis-a-vis the US dollar over the period 1976-2015. We find that modelling parameter time variation is needed for an accurate calibration of forecast confidence intervals, and is better suited at long horizons and in high-volatility periods. The biggest forecast improvements are obtained by modelling time variation in the volatilities of the innovations, rather than in the slope parameters. Moreover, we do not find evidence that parameter time variation helps to unravel exchange rate predictability by macroeconomic fundamentals. Finally, an economic evaluation of the different forecast models reveals that controlling for parameter time variation leads to higher portfolios returns, and to higher utility values for investors.

Suggested Citation

  • Abbate, Angela & Marcellino, Massimiliano, 2016. "Point, interval and density forecasts of exchange rates with time-varying parameter models," Discussion Papers 19/2016, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdps:192016
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/142220/1/861814746.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
    2. Rossi, Barbara, 2006. "Are Exchange Rates Really Random Walks? Some Evidence Robust To Parameter Instability," Macroeconomic Dynamics, Cambridge University Press, vol. 10(1), pages 20-38, February.
    3. Bacchetta, Philippe & van Wincoop, Eric, 2013. "On the unstable relationship between exchange rates and macroeconomic fundamentals," Journal of International Economics, Elsevier, vol. 91(1), pages 18-26.
    4. Charles Engel & Kenneth D. West, 2005. "Exchange Rates and Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 113(3), pages 485-517, June.
    5. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    6. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    7. West, Kenneth D. & Edison, Hali J. & Cho, Dongchul, 1993. "A utility-based comparison of some models of exchange rate volatility," Journal of International Economics, Elsevier, vol. 35(1-2), pages 23-45, August.
    8. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    9. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    10. Francis X. Diebold, 2015. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
    11. Carriero, A. & Kapetanios, G. & Marcellino, M., 2009. "Forecasting exchange rates with a large Bayesian VAR," International Journal of Forecasting, Elsevier, vol. 25(2), pages 400-417.
    12. Philippe Bacchetta & Eric van Wincoop, 2009. "Tacit On the Unstable Relationship between Exchange Rates and Macroeconomic Fundamentals," Cahiers de Recherches Economiques du Département d'économie 09.07, Université de Lausanne, Faculté des HEC, Département d’économie.
    13. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    14. Cheung, Yin-Wong & Chinn, Menzie D. & Pascual, Antonio Garcia, 2005. "Empirical exchange rate models of the nineties: Are any fit to survive?," Journal of International Money and Finance, Elsevier, vol. 24(7), pages 1150-1175, November.
    15. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    16. Pasquale Della Corte & Lucio Sarno & Ilias Tsiakas, 2009. "An Economic Evaluation of Empirical Exchange Rate Models," Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3491-3530, September.
    17. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    18. Ravazzolo Francesco & Vahey Shaun P., 2014. "Forecast densities for economic aggregates from disaggregate ensembles," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(4), pages 1-15, September.
    19. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.
    20. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    21. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    22. Balke, Nathan S. & Ma, Jun & Wohar, Mark E., 2013. "The contribution of economic fundamentals to movements in exchange rates," Journal of International Economics, Elsevier, vol. 90(1), pages 1-16.
    23. Cheung, Yin-Wong & Chinn, Menzie David, 2001. "Currency traders and exchange rate dynamics: a survey of the US market," Journal of International Money and Finance, Elsevier, vol. 20(4), pages 439-471, August.
    24. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
    25. Yufeng Han, 2006. "Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model," Review of Financial Studies, Society for Financial Studies, vol. 19(1), pages 237-271.
    26. Haroon Mumtaz & Laura Sunder‐Plassmann, 2013. "Time‐Varying Dynamics Of The Real Exchange Rate: An Empirical Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 498-525, April.
    27. Molodtsova, Tanya & Papell, David H., 2009. "Out-of-sample exchange rate predictability with Taylor rule fundamentals," Journal of International Economics, Elsevier, vol. 77(2), pages 167-180, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angela Abbate & Massimiliano Marcellino, 2017. "Macroeconomic activity and risk indicators: an unstable relationship," BAFFI CAREFIN Working Papers 1756, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    2. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    3. Papahristodoulou, Christos, 2019. "Is there any theory that explains the SEK?," MPRA Paper 95072, University Library of Munich, Germany, revised 08 Jul 2019.
    4. Legrand, Romain, 2018. "Time-Varying Vector Autoregressions: Efficient Estimation, Random Inertia and Random Mean," MPRA Paper 88925, University Library of Munich, Germany.
    5. Joscha Beckmann & Gary Koop & Dimitris Korobilis & Rainer Alexander Schüssler, 2020. "Exchange rate predictability and dynamic Bayesian learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 410-421, June.
    6. Huber, Florian & Zörner, Thomas O., 2019. "Threshold cointegration in international exchange rates:A Bayesian approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 458-473.
    7. Justyna Wróblewska & Anna Pajor, 2019. "One-period joint forecasts of Polish inflation, unemployment and interest rate using Bayesian VEC-MSF models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 11(1), pages 23-45, March.
    8. Krystian Jaworski, 2021. "Forecasting exchange rates for Central and Eastern European currencies using country‐specific factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 977-999, September.
    9. Camba-Méndez, Gonzalo, 2020. "On the inflation risks embedded in sovereign bond yields," Working Paper Series 2423, European Central Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papahristodoulou, Christos, 2019. "Is there any theory that explains the SEK?," MPRA Paper 95072, University Library of Munich, Germany, revised 08 Jul 2019.
    2. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    3. Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-24, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. David Alan Peel & Pantelis Promponas, 2016. "Forecasting the nominal exchange rate movements in a changing world. The case of the U.S. and the U.K," Working Papers 144439514, Lancaster University Management School, Economics Department.
    5. Eric Hillebrand & Jakob Mikkelsen & Lars Spreng & Giovanni Urga, 2020. "Exchange Rates and Macroeconomic Fundamentals: Evidence of Instabilities from Time-Varying Factor Loadings," CREATES Research Papers 2020-19, Department of Economics and Business Economics, Aarhus University.
    6. Philippe Bacchetta & Eric van Wincoop & Toni Beutler, 2010. "Can Parameter Instability Explain the Meese-Rogoff Puzzle?," NBER International Seminar on Macroeconomics, University of Chicago Press, vol. 6(1), pages 125-173.
    7. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    8. Amat, Christophe & Michalski, Tomasz & Stoltz, Gilles, 2018. "Fundamentals and exchange rate forecastability with simple machine learning methods," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 1-24.
    9. Bacchetta, Philippe & van Wincoop, Eric, 2013. "On the unstable relationship between exchange rates and macroeconomic fundamentals," Journal of International Economics, Elsevier, vol. 91(1), pages 18-26.
    10. Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2016. "Exchange rate predictability in a changing world," Journal of International Money and Finance, Elsevier, vol. 62(C), pages 1-24.
    11. Joscha Beckmann & Gary Koop & Dimitris Korobilis & Rainer Alexander Schüssler, 2020. "Exchange rate predictability and dynamic Bayesian learning," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 410-421, June.
    12. Colombo, Emilio & Pelagatti, Matteo, 2020. "Statistical learning and exchange rate forecasting," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1260-1289.
    13. Lasha Kavtaradze & Manouchehr Mokhtari, 2018. "Factor Models And Time†Varying Parameter Framework For Forecasting Exchange Rates And Inflation: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 302-334, April.
    14. Kim, Young Min & Lee, Seojin, 2020. "Exchange rate predictability: A variable selection perspective," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 117-134.
    15. Rime, Dagfinn & Sarno, Lucio & Sojli, Elvira, 2010. "Exchange rate forecasting, order flow and macroeconomic information," Journal of International Economics, Elsevier, vol. 80(1), pages 72-88, January.
    16. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    17. Hsiu-Hsin Ko, 2016. "Exchange Rate Predictability in Finite Samples," The Japanese Economic Review, Japanese Economic Association, vol. 67(3), pages 361-378, September.
    18. Kouwenberg, Roy & Markiewicz, Agnieszka & Verhoeks, Ralph & Zwinkels, Remco C. J., 2017. "Model Uncertainty and Exchange Rate Forecasting," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(1), pages 341-363, February.
    19. Kharrat, Sabrine & Hammami, Yacine & Fatnassi, Ibrahim, 2020. "On the cross-sectional relation between exchange rates and future fundamentals," Economic Modelling, Elsevier, vol. 89(C), pages 484-501.
    20. Fratzscher, Marcel & Rime, Dagfinn & Sarno, Lucio & Zinna, Gabriele, 2015. "The scapegoat theory of exchange rates: the first tests," Journal of Monetary Economics, Elsevier, vol. 70(C), pages 1-21.

    More about this item

    Keywords

    exchange rates; forecasting; density forecasts; BVAR; time-varying parameters;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdps:192016. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.