IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v41y2022i2p316-330.html
   My bibliography  Save this article

Time‐varying trend models for forecasting inflation in Australia

Author

Listed:
  • Na Guo
  • Bo Zhang
  • Jamie L. Cross

Abstract

We investigate whether a class of trend models, which decompose a time series into an underlying trend and transitory component, with various error term structures can improve upon the forecast performance of commonly used time series models when forecasting consumer price index (CPI) inflation in Australia. The main result is that trend models tend to provide more accurate point and density forecasts at medium to long forecasting horizons compared with conventional autoregressive and Phillips curve models. The best medium‐term point forecasts come from a trend model with stochastic volatility in the transitory component and that with a moving average component, whereas long‐run point forecasts are better made by trend models with stochastic volatilities and a moving average component. In a full sample study, we also find that trend models can capture various dynamics in periods of significance to the Australian economy which conventional models cannot. This includes the dramatic reduction in inflation when the RBA adopted inflation targeting, a one‐off 10% Goods and Services Tax inflationary episode in 2000, and then gradually decline in inflation since 2014.

Suggested Citation

  • Na Guo & Bo Zhang & Jamie L. Cross, 2022. "Time‐varying trend models for forecasting inflation in Australia," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 316-330, March.
  • Handle: RePEc:wly:jforec:v:41:y:2022:i:2:p:316-330
    DOI: 10.1002/for.2814
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2814
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christine Garnier & Elmar Mertens & Edward Nelson, 2015. "Trend Inflation in Advanced Economies," International Journal of Central Banking, International Journal of Central Banking, vol. 11(4), pages 65-136, September.
    2. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    3. Zhang, Bo & Chan, Joshua C.C. & Cross, Jamie L., 2020. "Stochastic volatility models with ARMA innovations: An application to G7 inflation forecasts," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1318-1328.
    4. Ij. Macfarlane, 1999. "Australian Monetary Policy in the Last Quarter of the Twentieth Century," The Economic Record, The Economic Society of Australia, vol. 75(3), pages 213-224, September.
    5. Douglas Staiger & James H. Stock & Mark W. Watson, 1997. "The NAIRU, Unemployment and Monetary Policy," Journal of Economic Perspectives, American Economic Association, vol. 11(1), pages 33-49, Winter.
    6. David Gruen & Tim Robinson & Andrew Stone, 2005. "Output Gaps In Real Time: How Reliable Are They?," The Economic Record, The Economic Society of Australia, vol. 81(252), pages 6-18, March.
    7. Cross, Jamie & Poon, Aubrey, 2016. "Forecasting structural change and fat-tailed events in Australian macroeconomic variables," Economic Modelling, Elsevier, vol. 58(C), pages 34-51.
    8. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    9. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    10. Beechey, Meredith & Österholm, Pär, 2010. "Forecasting inflation in an inflation-targeting regime: A role for informative steady-state priors," International Journal of Forecasting, Elsevier, vol. 26(2), pages 248-264, April.
    11. repec:bla:ecorec:v:75:y:1999:i:230:p:213-24 is not listed on IDEAS
    12. Garratt, Anthony & Mitchell, James & Vahey, Shaun P. & Wakerly, Elizabeth C., 2011. "Real-time inflation forecast densities from ensemble Phillips curves," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 77-87, January.
    13. Blix, Mårten, 1999. "Forecasting Swedish Inflation With a Markov Switching VAR," Working Paper Series 76, Sveriges Riksbank (Central Bank of Sweden).
    14. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    15. Cross, Jamie, 2019. "On the reduced macroeconomic volatility of the Australian economy: Good policy or good luck?," Economic Modelling, Elsevier, vol. 77(C), pages 174-186.
    16. Peter Sheehan & Robert G. Gregory, 2013. "The Resources Boom and Economic Policy in the Long Run," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 46(2), pages 121-139, June.
    17. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    18. Robert Dixon & G.C. Lim, 2004. "Underlying Inflation in Australia: Are the Existing Measures Satisfactory?," The Economic Record, The Economic Society of Australia, vol. 80(251), pages 373-386, December.
    19. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    20. James H. Stock & Mark W. Watson, 2007. "Erratum to “Why Has U.S. Inflation Become Harder to Forecast?”," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    21. Bo Zhang & Bao H. Nguyen, 2020. "Real-time forecasting of the Australian macroeconomy using flexible Bayesian VARs," CAMA Working Papers 2020-91, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    22. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Zhang & Jamie Cross & Na Guo, 2020. "Time-Varying Trend Models for Forecasting Inflation in Australia," Working Papers No 09/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    2. Jan Prüser, 2021. "Forecasting US inflation using Markov dimension switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 481-499, April.
    3. Bhattacharya, Rudrani & Kapoor, Mrigankshi, 2020. "Forecasting Consumer Price Index Inflation in India: Vector Error Correction Mechanism Vs. Dynamic Factor Model Approach for Non-Stationary Time Series," Working Papers 20/323, National Institute of Public Finance and Policy.
    4. Niu, Linlin & Xu, Xiu & Chen, Ying, 2017. "An adaptive approach to forecasting three key macroeconomic variables for transitional China," Economic Modelling, Elsevier, vol. 66(C), pages 201-213.
    5. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2021. "Forecasting natural gas prices using highly flexible time-varying parameter models," Economic Modelling, Elsevier, vol. 105(C).
    6. Josefine Quast & Maik H. Wolters, 2022. "Reliable Real-Time Output Gap Estimates Based on a Modified Hamilton Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    7. Nathan Goldstein & Ben‐Zion Zilberfarb, 2023. "The closer we get, the better we are?," Economic Inquiry, Western Economic Association International, vol. 61(2), pages 364-376, April.
    8. Afees A. Salisu & Raymond Swaray & Hadiza Sa'id, 2021. "Improving forecasting accuracy of the Phillips curve in OECD countries: The role of commodity prices," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2946-2975, April.
    9. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    10. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    11. Andrew B. Martinez, 2020. "Extracting Information from Different Expectations," Working Papers 2020-008, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    12. Anthony Garratt & Ivan Petrella, 2022. "Commodity prices and inflation risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 392-414, March.
    13. Verbrugge, Randal & Zaman, Saeed, 2023. "The hard road to a soft landing: Evidence from a (modestly) nonlinear structural model," Energy Economics, Elsevier, vol. 123(C).
    14. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    15. Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
    16. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    17. Malte Knüppel & Fabian Krüger, 2022. "Forecast uncertainty, disagreement, and the linear pool," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 23-41, January.
    18. Benjamin K. Johannsen & Elmar Mertens, 2021. "A Time‐Series Model of Interest Rates with the Effective Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
    19. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    20. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:41:y:2022:i:2:p:316-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.