IDEAS home Printed from https://ideas.repec.org/f/c/pli570.html
   My authors  Follow this author

Hua Liao

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Bingdong Hou & Xin Tang & Chunbo Ma & Li Liu & Yi-Ming Wei & Hua Liao, 2018. "Cooking fuel choice in rural China: results from microdata," CEEP-BIT Working Papers 110, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    2. Vania Vigolo & Rezarta Sallaku & Federico Testa, 2018. "Drivers and Barriers to Clean Cooking: A Systematic Literature Review from a Consumer Behavior Perspective," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    3. Jingwen Wu & Bingdong Hou & Ruoyu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2018. "Residential fuel choice in the rural: A field research on two counties of North China," CEEP-BIT Working Papers 109, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    4. Hongyun Han & Shu Wu, 2019. "Determinants of the Behavioral Lock-in of Rural Residents’ Direct Biomass Energy Consumption in China," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    5. Ebenezer Megbowon & Peter Mukarumbwa & Sola Ojo & Olawuyi Seyi Olalekan, 2018. "Household Cooking Energy Situation in Nigeria: Insight from Nigeria Malaria Indicator Survey 2015," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 284-291.
    6. Ovikuomagbe Oyedele, 2023. "Determinants of Household Cooking Energy Choice: Are Such Choices Influenced by Health Outcomes?," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 553-564, March.

  2. Yi-Ming Wei & Jin-Wei Wang & Tianqi Chen & Bi-Ying Yu & Hua Liao, 2018. "Frontiers of Low-Carbon Technologies: Results from Bibliographic Coupling with Sliding Window," CEEP-BIT Working Papers 116, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-cui & Wang, Jin-Wei, 2021. "Observing technology reserves of carbon capture and storage via patent data: Paving the way for carbon neutral," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    2. Guo, Jian & Zhong, Minghao & Chen, Shuran, 2022. "Analysis and simulation of BECCS vertical integration model in China based on evolutionary game and system dynamics," Energy, Elsevier, vol. 252(C).
    3. Wang, Xiaoli & Daim, Tugrul & Huang, Lucheng & Li, Zhiqiang & Shaikh, Ruqia & Kassi, Diby Francois, 2022. "Monitoring the development trend and competition status of high technologies using patent analysis and bibliographic coupling: The case of electronic design automation technology," Technology in Society, Elsevier, vol. 71(C).
    4. Zhao, Tian & Liu, Zhixin, 2019. "A novel analysis of carbon capture and storage (CCS) technology adoption: An evolutionary game model between stakeholders," Energy, Elsevier, vol. 189(C).

  3. Jin Liu & Bingdong Hou & Xiao-Wei Ma & Hua Liao, 2018. "Solid fuel use for cooking and its health effects on the elderly in rural China," CEEP-BIT Working Papers 111, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Qiang Wang & Thomas Dogot & Yueling Yang & Jian Jiao & Boyang Shi & Changbin Yin, 2020. "From “Coal to Gas” to “Coal to Biomass”: The Strategic Choice of Social Capital in China," Energies, MDPI, vol. 13(16), pages 1-22, August.
    2. Zhang, Lingyue & Li, Hui & Chen, Tianqi & Liao, Hua, 2022. "Health effects of cooking fuel transition: A dynamic perspective," Energy, Elsevier, vol. 251(C).
    3. Tian, Zhihua & Tian, Yanfang & Shen, Liangping & Shao, Shuai, 2021. "The health effect of household cooking fuel choice in China: An urban-rural gap perspective," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    4. Wu, Shu, 2022. "Household fuel switching and the elderly's health: Evidence from rural China," Energy, Elsevier, vol. 240(C).
    5. Fu Wang & Hong Geng & Donglan Zha & Chaoqun Zhang, 2023. "Multidimensional Energy Poverty in China: Measurement and Spatio-Temporal Disparities Characteristics," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 168(1), pages 45-78, August.
    6. Liu, Ziming & Li, Jia & Rommel, Jens & Feng, Shuyi, 2020. "Health impacts of cooking fuel choice in rural China," Energy Economics, Elsevier, vol. 89(C).
    7. Xiao Han & Chu Wei, 2021. "Household energy consumption: state of the art, research gaps, and future prospects," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12479-12504, August.
    8. Fanghua Li & Abbas Ali Chandio & Yinying Duan & Dungang Zang, 2022. "How Does Clean Energy Consumption Affect Women’s Health: New Insights from China," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    9. Hong, Xudong & Wu, Shengnan & Zhang, Xueliang, 2022. "Clean energy powers energy poverty alleviation: Evidence from Chinese micro-survey data," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    10. Hou, Bingdong & Zhang, Lingyue & Ai, Xianneng & Li, Hui, 2021. "Impact of city gas on mortality in China: National and regional estimates," Energy Policy, Elsevier, vol. 156(C).
    11. Li, Wenli & Yu, Youping & He, Qiang & Xu, Dingde & Qi, Yanbin & Deng, Xin, 2023. "Impact of clean energy use on the subjective health of household members: Empirical evidence from rural China," Energy, Elsevier, vol. 263(PD).
    12. Ma, Wanglin & Ma, Wanglin & Zheng, Hongyun, 2021. "Impacts of Cooking Fuel Choices on Subjective Well-Being: Insights from Rural China," 2021 Conference, August 17-31, 2021, Virtual 315149, International Association of Agricultural Economists.
    13. Shu Wu, 2021. "The Health Impact of Household Cooking Fuel Choice on Women: Evidence from China," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    14. Wang, Xiqian & Bian, Yong & Zhang, Qin, 2023. "The effect of cooking fuel choice on the elderly’s well-being: Evidence from two non-parametric methods," Energy Economics, Elsevier, vol. 125(C).
    15. Ma, Wanglin & Vatsa, Puneet & Zheng, Hongyun, 2022. "Cooking fuel choices and subjective well-being in rural China: Implications for a complete energy transition," Energy Policy, Elsevier, vol. 165(C).

  4. Jing Tian & Julio Lumbreras & Celio Andrade & Hua Liao, 2018. "Key Sectors in Carbon Footprint Responsibility at the City Level: A Case Study of Beijing," CEEP-BIT Working Papers 112, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Torre Cepeda Leonardo E. & Chapa Cantú Joana C. & González González Eva Edith, 2020. "Economic Integration Mexico-United States and Regional Performance in Mexico," Working Papers 2020-06, Banco de México.

  5. Jin-Wei Wang & Hua Liao & Bao-Jun Tang & Ruo-Yu Ke & Yi-Ming Wei, 2017. "Is the CO2 Emissions Reduction from Scale Change, Structural Change or Technology Change? Evidence from Non-metallic Sector of 11 Major Economies in 1995-2009," CEEP-BIT Working Papers 101, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Yao Qian & Lang Sun & Quanyi Qiu & Lina Tang & Xiaoqi Shang & Chengxiu Lu, 2020. "Analysis of CO 2 Drivers and Emissions Forecast in a Typical Industry-Oriented County: Changxing County, China," Energies, MDPI, vol. 13(5), pages 1-21, March.
    2. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    3. Nayeah Kim & Yun Seop Hwang & Mun Ho Hwang, 2019. "New projection of GHG reduction potentials for Korea’s cement industry and comparison with Roadmap 2030," Energy & Environment, , vol. 30(3), pages 499-521, May.
    4. Yi-Ming Wei & Jin-Wei Wang & Tianqi Chen & Bi-Ying Yu & Hua Liao, 2018. "Frontiers of Low-Carbon Technologies: Results from Bibliographic Coupling with Sliding Window," CEEP-BIT Working Papers 116, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    5. Moutinho, Victor & Madaleno, Mara & Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "Factors affecting CO2 emissions in top countries on renewable energies: A LMDI decomposition application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 605-622.
    6. Li-Jing Liu & Qiao-Mei Liang & Felix Creutzig & Nan Cheng & Lan-Cui Liu, 2021. "Electricity end-use and construction activity are key leverage points for co-controlling greenhouse gases and local pollution in China," Climatic Change, Springer, vol. 167(1), pages 1-22, July.
    7. Hongli Zhang & Lei Shen & Shuai Zhong & Ayman Elshkaki, 2020. "Economic Structure Transformation and Low-Carbon Development in Energy-Rich Cities: The Case of the Contiguous Area of Shanxi and Shaanxi Provinces, and Inner Mongolia Autonomous Region of China," Sustainability, MDPI, vol. 12(5), pages 1-14, March.

  6. Hao Chen & Bao-Jun Tang & Hua Liao & Yi-Ming Wei, 2016. "A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China," CEEP-BIT Working Papers 97, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Enhanced network effects and stochastic modelling in generation expansion planning: Insights from an insular power system," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    2. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
    3. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    4. Guangxiao Hu & Xiaoming Ma & Junping Ji, 2017. "A Stochastic Optimization Model for Carbon Mitigation Path under Demand Uncertainty of the Power Sector in Shenzhen, China," Sustainability, MDPI, vol. 9(11), pages 1-12, October.
    5. Chandra Ade Irawan & Peter S. Hofman & Hing Kai Chan & Antony Paulraj, 2022. "A stochastic programming model for an energy planning problem: formulation, solution method and application," Annals of Operations Research, Springer, vol. 311(2), pages 695-730, April.
    6. Fitiwi, Desta & Lynch, Muireann Á. & Bertsch, Valentin, 2019. "Optimal development of electricity generation mix considering fossil fuel phase-out and strategic multi-area interconnection," Papers WP616, Economic and Social Research Institute (ESRI).
    7. Fan, Jing-Li & Wang, Jia-Xing & Hu, Jia-Wei & Wang, Yu & Zhang, Xian, 2019. "Optimization of China’s provincial renewable energy installation plan for the 13th five-year plan based on renewable portfolio standards," Applied Energy, Elsevier, vol. 254(C).
    8. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
    9. Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
    10. Erdong Zhao & Jianmin Chen & Junmei Lan & Liwei Liu, 2024. "Power Generation Mix Optimization under Auction Mechanism for Carbon Emission Rights," Energies, MDPI, vol. 17(3), pages 1-24, January.
    11. Chen, H. & Chyong CK. & Kang, J-N. & Wei Y-M., 2018. "Economic dispatch in the electricity sector in China: potential benefits and challenges ahead," Cambridge Working Papers in Economics 1836, Faculty of Economics, University of Cambridge.
    12. Tang, Baojun & Li, Ru & Yu, Biying & An, Runying & Wei, Yi-Ming, 2018. "How to peak carbon emissions in China's power sector: A regional perspective," Energy Policy, Elsevier, vol. 120(C), pages 365-381.
    13. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
    14. Chen, Siyuan & Liu, Pei & Li, Zheng, 2019. "Multi-regional power generation expansion planning with air pollutants emission constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 382-394.
    15. Peng Wang & Chunsheng Wang & Yukun Hu & Liz Varga & Wei Wang, 2018. "Power Generation Expansion Optimization Model Considering Multi-Scenario Electricity Demand Constraints: A Case Study of Zhejiang Province, China," Energies, MDPI, vol. 11(6), pages 1-15, June.
    16. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2016. "Inter-regional power grid planning up to 2030 in China considering renewable energy development and regional pollutant control: A multi-region bottom-up optimization model," Applied Energy, Elsevier, vol. 184(C), pages 641-658.
    17. Afful-Dadzie, Anthony & Afful-Dadzie, Eric & Awudu, Iddrisu & Banuro, Joseph Kwaku, 2017. "Power generation capacity planning under budget constraint in developing countries," Applied Energy, Elsevier, vol. 188(C), pages 71-82.
    18. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2017. "Generation expansion planning with high share of renewables of variable output," Applied Energy, Elsevier, vol. 190(C), pages 1275-1288.
    19. Yang, Xueqin & Li, Hailong & Wallin, Fredrik & Yu, Zhixin & Wang, Zhen, 2017. "Impacts of emission reduction and external cost on natural gas distribution," Applied Energy, Elsevier, vol. 207(C), pages 553-561.
    20. Jing-Ming Chen & Biying Yu & Yi-Ming Wei, 2019. "CO2 emissions accounting for the chemical industry: an empirical analysis for China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1327-1343, December.
    21. Liang, Yuanyuan & Yu, Biying & Wang, Lu, 2019. "Costs and benefits of renewable energy development in China's power industry," Renewable Energy, Elsevier, vol. 131(C), pages 700-712.
    22. Song Xu & Yiu Hin Martin Lu & Meiheriayi Mutailipu & Kanti Yan & Yaoli Zhang & Staffan Qvist, 2022. "Repowering Coal Power in China by Nuclear Energy—Implementation Strategy and Potential," Energies, MDPI, vol. 15(3), pages 1-27, January.
    23. Chen, Hao & Cui, Jian & Song, Feng & Jiang, Zhigao, 2022. "Evaluating the impacts of reforming and integrating China's electricity sector," Energy Economics, Elsevier, vol. 108(C).
    24. Lee, Jui-Yuan, 2017. "A multi-period optimisation model for planning carbon sequestration retrofits in the electricity sector," Applied Energy, Elsevier, vol. 198(C), pages 12-20.
    25. Yang Liu & Congrui Zhang & Yingying Huang & Zhixiong Xiao & Yaxuan Han & Gaofeng Ren, 2021. "Climate Impact of China’s Promotion of the Filling Mining Method: Bottom-Up Estimation of Greenhouse Gas Emissions in Underground Metal Mines," Energies, MDPI, vol. 14(11), pages 1-17, June.
    26. Trotter, Philipp A. & Cooper, Nathanial J. & Wilson, Peter R., 2019. "A multi-criteria, long-term energy planning optimisation model with integrated on-grid and off-grid electrification – The case of Uganda," Applied Energy, Elsevier, vol. 243(C), pages 288-312.
    27. Tang, Bao-Jun & Li, Ru & Li, Xiao-Yi & Chen, Hao, 2017. "An optimal production planning model of coal-fired power industry in China: Considering the process of closing down inefficient units and developing CCS technologies," Applied Energy, Elsevier, vol. 206(C), pages 519-530.
    28. Wei, Yi-Ming & Chen, Hao & Chyong, Chi Kong & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun, 2018. "Economic dispatch savings in the coal-fired power sector: An empirical study of China," Energy Economics, Elsevier, vol. 74(C), pages 330-342.
    29. Wang, Yongpei & Yan, Weilong & Komonpipat, Supak, 2019. "How does the capacity utilization of thermal power generation affect pollutant emissions? Evidence from the panel data of China's provinces," Energy Policy, Elsevier, vol. 132(C), pages 440-451.
    30. Chen, Jing-Ming & Yu, Biying & Wei, Yi-Ming, 2018. "Energy technology roadmap for ethylene industry in China," Applied Energy, Elsevier, vol. 224(C), pages 160-174.
    31. Carlos Roberto de Sousa Costa & Paula Ferreira, 2023. "A Review on the Internalization of Externalities in Electricity Generation Expansion Planning," Energies, MDPI, vol. 16(4), pages 1-19, February.
    32. Chen, Hao & Geng, Hao-Peng & Ling, Hui-Ting & Peng, Song & Li, Nan & Yu, Shiwei & Wei, Yi-Ming, 2020. "Modeling the coal-to-gas switch potentials in the power sector: A case study of China," Energy, Elsevier, vol. 192(C).

  7. Hua Liao & Jia-Wei Cai & Dong-Wei Yang & Yi-Ming Wei, 2016. "Why did the historical energy forecasting succeed or fail? A case study on IEA¡¯s projection," CEEP-BIT Working Papers 92, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
    2. Wang, Fangzhi & Liao, Hua, 2022. "Unexpected economic growth and oil price shocks," Energy Economics, Elsevier, vol. 116(C).
    3. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2022. "Accuracy indicators for evaluating retrospective performance of energy system models," Applied Energy, Elsevier, vol. 325(C).
    4. Yuan, Xiao-Chen & Sun, Xun & Zhao, Weigang & Mi, Zhifu & Wang, Bing & Wei, Yi-Ming, 2017. "Forecasting China’s regional energy demand by 2030: A Bayesian approach," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 85-95.
    5. Wachtmeister, Henrik & Henke, Petter & Höök, Mikael, 2018. "Oil projections in retrospect: Revisions, accuracy and current uncertainty," Applied Energy, Elsevier, vol. 220(C), pages 138-153.

  8. Hao Chen & Hua Liao & Bao-Jun Tang & Yi-Ming Wei, 2016. "Impacts of OPEC's political risk on the international crude oil prices: An empirical analysis based on the SVAR models," CEEP-BIT Working Papers 96, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Valérie Mignon & Yifei Cai & Jamel Saadaoui, 2022. "Not all political relation shocks are alike: Assessing the impacts of US-China tensions on the oil market," Working Papers hal-04159797, HAL.
    2. Guo, Yawei & Li, Jianping & Li, Yehua & You, Wanhai, 2021. "The roles of political risk and crude oil in stock market based on quantile cointegration approach: A comparative study in China and US," Energy Economics, Elsevier, vol. 97(C).
    3. Hao-Lin Shao & Ying-Hui Shao & Yan-Hong Yang, 2021. "New insights into price drivers of crude oil futures markets: Evidence from quantile ARDL approach," Papers 2110.02693, arXiv.org.
    4. Yao, Ting & Zhang, Yue-Jun & Ma, Chao-Qun, 2017. "How does investor attention affect international crude oil prices?," Applied Energy, Elsevier, vol. 205(C), pages 336-344.
    5. Lee, Chi-Chuan & Lee, Chien-Chiang & Ning, Shao-Lin, 2017. "Dynamic relationship of oil price shocks and country risks," Energy Economics, Elsevier, vol. 66(C), pages 571-581.
    6. Li, Songsong & Zhang, Weiqian & Zhang, Wei, 2023. "Dynamic time-frequency connectedness and risk spillover between geopolitical risks and natural resources," Resources Policy, Elsevier, vol. 82(C).
    7. Valérie Mignon & Jamel Saadaoui, 2023. "Asymmetries in the oil market: Accounting for the growing role of China through quantile regressions," Post-Print hal-04435770, HAL.
    8. Su, Chi-Wei & Khan, Khalid & Tao, Ran & Umar, Muhammad, 2020. "A review of resource curse burden on inflation in Venezuela," Energy, Elsevier, vol. 204(C).
    9. Jia Liao & Yu Shi & Xiangyun Xu, 2018. "Why Is the Correlation between Crude Oil Prices and the US Dollar Exchange Rate Time-Varying?—Explanations Based on the Role of Key Mediators," IJFS, MDPI, vol. 6(3), pages 1-13, June.
    10. Jin‐Yu Chen & Xue‐Hong Zhu & Mei‐Rui Zhong, 2021. "Time‐varying effects and structural change of oil price shocks on industrial output: Evidence from China's oil industrial chain," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3460-3472, July.
    11. Espinasa, Ramon & ter Horst, Enrique & Reyes, Sergio Guerra & Manzano, Osmel & Molina, German & Rigobon, Roberto, 2017. "A micro-based model for world oil market," Energy Economics, Elsevier, vol. 66(C), pages 431-449.
    12. Zeng, Shihong & Nan, Xin & Liu, Chao & Chen, Jiuying, 2017. "The response of the Beijing carbon emissions allowance price (BJC) to macroeconomic and energy price indices," Energy Policy, Elsevier, vol. 106(C), pages 111-121.
    13. Manickavasagam, Jeevananthan & Visalakshmi, S. & Apergis, Nicholas, 2020. "A novel hybrid approach to forecast crude oil futures using intraday data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    14. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2019. "Crude oil price shocks and hedging performance: A comparison of volatility models," Energy Economics, Elsevier, vol. 81(C), pages 1132-1147.
    15. Jiang, Yong & Ren, Yi-Shuai & Ma, Chao-Qun & Liu, Jiang-Long & Sharp, Basil, 2020. "Does the price of strategic commodities respond to U.S. partisan conflict?," Resources Policy, Elsevier, vol. 66(C).
    16. Yue Liu & Hao Dong & Pierre Failler, 2019. "The Oil Market Reactions to OPEC’s Announcements," Energies, MDPI, vol. 12(17), pages 1-15, August.
    17. Chen, Lin & Wen, Fenghua & Zhang, Yun & Miao, Xiao, 2023. "Oil supply expectations and corporate social responsibility," International Review of Financial Analysis, Elsevier, vol. 87(C).
    18. Merrill, Ryan K. & Orlando, Anthony W., 2020. "Oil at risk: Political violence and accelerated carbon extraction in the Middle East and North Africa," Energy Economics, Elsevier, vol. 92(C).
    19. Jia-Yue Huang & Yun-Fei Cao & Hui-Ling Zhou & Hong Cao & Bao-Jun Tang & Nan Wang, 2018. "Optimal Investment Timing and Scale Choice of Overseas Oil Projects: A Real Option Approach," Energies, MDPI, vol. 11(11), pages 1-22, October.
    20. Monge, Manuel & Cristóbal, Enrique, 2021. "Terrorism and the behavior of oil production and prices in OPEC," Resources Policy, Elsevier, vol. 74(C).
    21. Paweł Mielcarz & Dmytro Osiichuk & Jarosław Cymerski, 2020. "Algorithmic Sangfroid? The Decline of Sensitivity of Crude Oil Prices to News on Potentially Disruptive Terror Attacks and Political Unrest," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    22. Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
    23. Nikkinen, Jussi & Rothovius, Timo, 2019. "Energy sector uncertainty decomposition: New approach based on implied volatilities," Applied Energy, Elsevier, vol. 248(C), pages 141-148.
    24. Yan Ding & Yue Liu & Pierre Failler, 2022. "The Impact of Uncertainties on Crude Oil Prices: Based on a Quantile-on-Quantile Method," Energies, MDPI, vol. 15(10), pages 1-35, May.
    25. Ding, Qian & Huang, Jianbai & Gao, Wang & Zhang, Hongwei, 2022. "Does political risk matter for gold market fluctuations? A structural VAR analysis," Research in International Business and Finance, Elsevier, vol. 60(C).
    26. Wood, Dallas & Larson, Justin & Jones, Jason & Galperin, Diana & Shelby, Michael & Gonzalez, Manuel, 2022. "World oil price impacts on country-specific fuel markets: Evidence of a muted global rebound effect," Energy Economics, Elsevier, vol. 111(C).
    27. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
    28. Zhang, Hongwei & Wang, Ying & Yang, Cai & Guo, Yaoqi, 2021. "The impact of country risk on energy trade patterns based on complex network and panel regression analyses," Energy, Elsevier, vol. 222(C).
    29. Zhao, Weigang & Cao, Yunfei & Miao, Bo & Wang, Ke & Wei, Yi-Ming, 2018. "Impacts of shifting China's final energy consumption to electricity on CO2 emission reduction," Energy Economics, Elsevier, vol. 71(C), pages 359-369.
    30. Yong Jiang & Yi-Shuai Ren & Chao-Qun Ma & Jiang-Long Liu & Basil Sharp, 2018. "Does the price of strategic commodities respond to U.S. Partisan Conflict?," Papers 1810.08396, arXiv.org, revised Feb 2020.
    31. Ansari, Dawud, 2017. "OPEC, Saudi Arabia, and the shale revolution: Insights from equilibrium modelling and oil politics," Energy Policy, Elsevier, vol. 111(C), pages 166-178.
    32. Sephton, Peter & Mann, Janelle, 2018. "Gold and crude oil prices after the great moderation," Energy Economics, Elsevier, vol. 71(C), pages 273-281.
    33. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2024. "The impact of Russia–Ukraine war on crude oil prices: an EMC framework," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    34. Balli, Esra & Nazif Çatık, Abdurrahman & Nugent, Jeffrey B., 2021. "Time-varying impact of oil shocks on trade balances: Evidence using the TVP-VAR model," Energy, Elsevier, vol. 217(C).
    35. Zheng, Deyuan & Zhao, Chunguang & Hu, Jiaying, 2023. "Impact of geopolitical risk on the volatility of natural resource commodity futures prices in China," Resources Policy, Elsevier, vol. 83(C).
    36. Kisswani, Khalid M., 2021. "(A)symmetric time-varying effects of uncertainty fluctuations on oil price volatility: A nonlinear ARDL investigation," Resources Policy, Elsevier, vol. 73(C).
    37. Kanjilal, Kakali & Ghosh, Sajal, 2017. "Dynamics of crude oil and gold price post 2008 global financial crisis – New evidence from threshold vector error-correction model," Resources Policy, Elsevier, vol. 52(C), pages 358-365.
    38. Refk Selmi & Shawkat Hammoudeh & Mark E. Wohar, 2023. "What drives most jumps in global crude oil prices? Fundamental shortage conditions, cartel, geopolitics or the behaviour of financial market participants," The World Economy, Wiley Blackwell, vol. 46(3), pages 598-618, March.
    39. Yang, Hao-Chang & Cai, Yi-Fei & Zhang, Miao-Yin, 2022. "Political risk and green technology improvement: New insights from global evidence," Innovation and Green Development, Elsevier, vol. 1(1).
    40. Song, Yu & Chen, Bo & Hou, Na & Yang, Yi, 2022. "Terrorist attacks and oil prices: A time-varying causal relationship analysis," Energy, Elsevier, vol. 246(C).
    41. Comincioli, Nicola & Hagspiel, Verena & Kort, Peter M. & Menoncin, Francesco & Miniaci, Raffaele & Vergalli, Sergio, 2021. "Mothballing in a Duopoly: Evidence from a (Shale) Oil Market," Energy Economics, Elsevier, vol. 104(C).
    42. Chen, Jinyu & Zhu, Xuehong & Li, Hailing, 2020. "The pass-through effects of oil price shocks on China's inflation: A time-varying analysis," Energy Economics, Elsevier, vol. 86(C).
    43. Monge, Manuel & Romero Rojo, María Fátima & Gil-Alana, Luis Alberiko, 2023. "The impact of geopolitical risk on the behavior of oil prices and freight rates," Energy, Elsevier, vol. 269(C).
    44. Su, Chi-Wei & Khan, Khalid & Tao, Ran & Nicoleta-Claudia, Moldovan, 2019. "Does geopolitical risk strengthen or depress oil prices and financial liquidity? Evidence from Saudi Arabia," Energy, Elsevier, vol. 187(C).
    45. KILICARSLAN Zerrin & DUMRUL Yasemin, 2017. "Macroeconomic Impacts Of Oil Price Shocks: An Empirical Analysis Based On The Svar Models," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 69(5), pages 55-72, December.
    46. Zhou, Ying-Zhe & Huang, Jian-Bai & Chen, Jin-Yu, 2019. "Time-varying effect of the financialization of nonferrous metals markets on China's industrial sector," Resources Policy, Elsevier, vol. 64(C).
    47. Zhihua Ding & Caicai Feng & Zhenhua Liu & Guangqiang Wang & Lingyun He & Manzhi Liu, 2017. "Coal price fluctuation mechanism in China based on system dynamics model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1151-1167, January.
    48. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M., 2020. "The (in)efficiency of NYMEX energy futures: A multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    49. Bruno Thiago Tomio & Guillaume Vallet, 2021. "Carry Trade and Negative Policy Rates in Switzerland : Low-lying fog or storm ?," Post-Print halshs-03669561, HAL.
    50. Huang, Wanling & Mollick, Andre Varella, 2020. "Tight oil, real WTI prices and U.S. stock returns," Energy Economics, Elsevier, vol. 85(C).
    51. Zhao, Lu-Tao & Xing, Yue-Yue & Zhao, Qiu-Rong & Chen, Xue-Hui, 2023. "Dynamic impacts of online investor sentiment on international crude oil prices," Resources Policy, Elsevier, vol. 82(C).
    52. Le, Thai-Ha & Le, Anh Tu & Le, Ha-Chi, 2021. "The historic oil price fluctuation during the Covid-19 pandemic: What are the causes?," Research in International Business and Finance, Elsevier, vol. 58(C).
    53. Zhenhua Liu & Zhihua Ding & Tao Lv & Jy S. Wu & Wei Qiang, 2019. "Financial factors affecting oil price change and oil-stock interactions: a review and future perspectives," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 207-225, January.
    54. Apergis, Nicholas & Hayat, Tasawar & Saeed, Tareq, 2021. "US partisan conflict uncertainty and oil prices," Energy Policy, Elsevier, vol. 150(C).
    55. Qadan, Mahmoud & Idilbi-Bayaa, Yasmeen, 2020. "Risk appetite and oil prices," Energy Economics, Elsevier, vol. 85(C).
    56. Klein, Tony, 2018. "Trends and contagion in WTI and Brent crude oil spot and futures markets - The role of OPEC in the last decade," Energy Economics, Elsevier, vol. 75(C), pages 636-646.
    57. Su, Chi-Wei & Wang, Dan & Mirza, Nawazish & Zhong, Yifan & Umar, Muhammad, 2023. "The impact of consumer confidence on oil prices," Energy Economics, Elsevier, vol. 124(C).
    58. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
    59. Weigang Zhao & Yunfei Cao & Bo Miao & Ke Wang & Yi-Ming Wei, 2018. "Impacts of shifting China¡¯s final energy consumption to electricity on CO2 emission reduction," CEEP-BIT Working Papers 115, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    60. Klein, Tony, 2018. "Trends and Contagion in WTI and Brent Crude Oil Spot and Futures Markets - The Role of OPEC in the last Decade," QBS Working Paper Series 2018/05, Queen's University Belfast, Queen's Business School.
    61. Lin, Boqiang & Su, Tong, 2021. "Do China's macro-financial factors determine the Shanghai crude oil futures market?," International Review of Financial Analysis, Elsevier, vol. 78(C).

  9. Hua Liao & Xin Tang & Yi-Ming Wei, 2016. "Solid fuel use in rural China and its health effects," CEEP-BIT Working Papers 90, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Shi, Xunpeng & Yu, Jian & Cheong, Tsun Se, 2020. "Convergence and distribution dynamics of energy consumption among China's households," Energy Policy, Elsevier, vol. 142(C).
    2. Zhang, Ziyu & Shu, Hongting & Yi, Hong & Wang, Xiaohua, 2021. "Household multidimensional energy poverty and its impacts on physical and mental health," Energy Policy, Elsevier, vol. 156(C).
    3. Liu, Ziming & Yu, Lu, 2020. "Stay or Leave? The Role of Air Pollution in Urban Migration Choices," Ecological Economics, Elsevier, vol. 177(C).
    4. Wang, Dongji & Liu, Liansheng & Yuan, Ye & Yang, Hua & Zhou, Yixing & Duan, Ruanze, 2020. "Design and key heating power parameters of a newly-developed household biomass briquette heating boiler," Renewable Energy, Elsevier, vol. 147(P1), pages 1371-1379.
    5. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    6. Pan, Tianxin & Palmer, Michael, 2017. "Risk factors and non-communicable disease diagnosis in China," MPRA Paper 87847, University Library of Munich, Germany, revised 11 Jan 2018.
    7. Wang, Dongji & Liu, Liansheng & Liu, Chunyu & Xie, Jun & Yuan, Ye & Yang, Hua & Duan, Runze, 2021. "A novel supply chain of straw briquette fuel and the optimal way to acquire fixed assets," Energy Policy, Elsevier, vol. 153(C).
    8. Anna Brunerová & Hynek Roubík & Milan Brožek, 2018. "Bamboo Fiber and Sugarcane Skin as a Bio-Briquette Fuel," Energies, MDPI, vol. 11(9), pages 1-20, August.
    9. Li, Hui & Zhang, Ruining & Ai, Xianneng, 2022. "Cost estimation of “coal-to-gas” project: Government and residents’ perspectives," Energy Policy, Elsevier, vol. 167(C).
    10. Ang'u, Cohen & Muthama, Nzioka John & Mutuku, Mwanthi Alexander & M’IKiugu, Mutembei Henry, 2023. "Analysis of energy poverty in Kenya and its implications for human health," Energy Policy, Elsevier, vol. 176(C).
    11. Jingwen Wu & Bingdong Hou & Ruo-Yu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2017. "Residential Fuel Choice in Rural Areas: Field Research of Two Counties of North China," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    12. Qiang Wang & Thomas Dogot & Yueling Yang & Jian Jiao & Boyang Shi & Changbin Yin, 2020. "From “Coal to Gas” to “Coal to Biomass”: The Strategic Choice of Social Capital in China," Energies, MDPI, vol. 13(16), pages 1-22, August.
    13. Wei-Hua Qu & Ling Xu & Guo-Hua Qu & Zhi-Jun Yan & Jian-Xiu Wang, 2017. "The impact of energy consumption on environment and public health in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 675-697, June.
    14. Zhang, Lingyue & Li, Hui & Chen, Tianqi & Liao, Hua, 2022. "Health effects of cooking fuel transition: A dynamic perspective," Energy, Elsevier, vol. 251(C).
    15. Tian, Zhihua & Tian, Yanfang & Shen, Liangping & Shao, Shuai, 2021. "The health effect of household cooking fuel choice in China: An urban-rural gap perspective," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. Shrestha, Anil & Mustafa, Andy Ali & Htike, Myo Myo & You, Vithyea & Kakinaka, Makoto, 2022. "Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy," Renewable Energy, Elsevier, vol. 199(C), pages 419-432.
    17. Wu, Shu, 2022. "Household fuel switching and the elderly's health: Evidence from rural China," Energy, Elsevier, vol. 240(C).
    18. Anil Shrestha & Makoto Kakinaka, 2022. "Remittance Inflows and Energy Transition of the Residential Sector in Developing Countries," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    19. Jingwen Wu & Bingdong Hou & Ruoyu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2018. "Residential fuel choice in the rural: A field research on two counties of North China," CEEP-BIT Working Papers 109, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    20. Shenxin Li & Sedra Shafi & Bin Zou & Jing Liu & Ying Xiong & Bilal Muhammad, 2022. "PM 2.5 Concentration Exposure over the Belt and Road Region from 2000 to 2020," IJERPH, MDPI, vol. 19(5), pages 1-16, March.
    21. Liu, Ziming & Li, Jia & Rommel, Jens & Feng, Shuyi, 2020. "Health impacts of cooking fuel choice in rural China," Energy Economics, Elsevier, vol. 89(C).
    22. Liu, Yuan & Chen, Jiahui & Zhao, Lutao & Liao, Hua, 2023. "Rural photovoltaic projects substantially prompt household energy transition: Evidence from China," Energy, Elsevier, vol. 275(C).
    23. Li, Jianglong & Chen, Chang & Liu, Hongxun, 2019. "Transition from non-commercial to commercial energy in rural China: Insights from the accessibility and affordability," Energy Policy, Elsevier, vol. 127(C), pages 392-403.
    24. Wang, Wei & Xiao, Weiwei & Bai, Caiquan, 2022. "Can renewable energy technology innovation alleviate energy poverty? Perspective from the marketization level," Technology in Society, Elsevier, vol. 68(C).
    25. Wei-Hua Qu & Guo-Hua Qu & Xin-Dong Zhang & Zhi-Jun Yan, 2018. "Effects of private car ownership, economic growth and medical services on healthcare expenditure in China: a dynamic panel data analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 167-188, August.
    26. Liao, Hua & Cao, Huai-Shu, 2018. "The pattern of electricity use in residential sector: The experiences from 133 economies," Energy, Elsevier, vol. 145(C), pages 515-525.
    27. Chen, Yilin & Shen, Huizhong & Zhong, Qirui & Chen, Han & Huang, Tianbo & Liu, Junfeng & Cheng, Hefa & Zeng, Eddy Y. & Smith, Kirk R. & Tao, Shu, 2016. "Transition of household cookfuels in China from 2010 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 800-809.
    28. Ai, Xian-Neng & Du, Yun-Fei & Li, Wei-Ming & Li, Hui & Liao, Hua, 2021. "The pattern of household energy transition," Energy, Elsevier, vol. 234(C).
    29. Shu Wu, 2021. "The Health Impact of Household Cooking Fuel Choice on Women: Evidence from China," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    30. Hou, Bingdong & Wu, Jingwen & Mi, Zhifu & Ma, Chunbo & Shi, Xunpeng & Liao, Hua, 2022. "Cooking fuel types and the health effects: A field study in China," Energy Policy, Elsevier, vol. 167(C).
    31. Wang, Shaobin & Liu, Yonglin & Zhao, Chao & Pu, Haixia, 2019. "Residential energy consumption and its linkages with life expectancy in mainland China: A geographically weighted regression approach and energy-ladder-based perspective," Energy, Elsevier, vol. 177(C), pages 347-357.

  10. Burke, Paul J. & Liao, Hua, 2015. "Is the price elasticity of demand for coal in China increasing?," Working Papers 249510, Australian National University, Centre for Climate Economics & Policy.

    Cited by:

    1. Huntington, Hillard & Barrios, James & Arora, Vipin, 2017. "Review of Key International Demand Elasticities for Major Industrializing Economies," MPRA Paper 95890, University Library of Munich, Germany, revised Aug 2019.
    2. Atkin, David & Faber, Benjamin & Fally, Thibault & Gonzalez-Navarro, Marco, 2020. "Measuring Welfare and Inequality with Incomplete Price Information," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt270480bh, Department of Agricultural & Resource Economics, UC Berkeley.
    3. Ma, Chunbo & Stern, David I., 2016. "Long-run estimates of interfuel and interfactor elasticities," Resource and Energy Economics, Elsevier, vol. 46(C), pages 114-130.
    4. Fujii, Hidemichi & Managi, Shunsuke, 2018. "Decomposition analysis of sustainable green technology inventions in China," MPRA Paper 90251, University Library of Munich, Germany.
    5. Thibault Fally & James Sayre, 2018. "Commodity Trade Matters," 2018 Meeting Papers 172, Society for Economic Dynamics.
    6. Julien Daubanes & Fanny Henriet & Katheline Schubert, 2021. "Unilateral CO2 Reduction Policy with More Than One Carbon Energy Source," Post-Print hal-03093955, HAL.
    7. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    8. Burke, Paul J. & Yang, Hewen, 2016. "The price and income elasticities of natural gas demand: International evidence," Energy Economics, Elsevier, vol. 59(C), pages 466-474.
    9. Yabin Da & Bin Zeng & Jing-Li Fan & Jiawei Hu & Lanlan Li, 2023. "Heterogeneous responses to climate: evidence from residential electricity consumption," Climatic Change, Springer, vol. 176(8), pages 1-19, August.
    10. Salisu, Afees A. & Adediran, Idris A., 2019. "Assessing the inflation hedging potential of coal and iron ore in Australia," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    11. Fan, Xinghua & Wang, Li & Li, Shasha, 2016. "Predicting chaotic coal prices using a multi-layer perceptron network model," Resources Policy, Elsevier, vol. 50(C), pages 86-92.
    12. Ian W.H. Parry & Mr. Victor Mylonas & Nate Vernon, 2018. "Mitigation Policies for the Paris Agreement: An Assessment for G20 Countries," IMF Working Papers 2018/193, International Monetary Fund.
    13. Halim Tatli, 2019. "Factors affecting industrial coal demand in Turkey," Energy & Environment, , vol. 30(6), pages 1027-1048, September.
    14. Tan, Xiujie & Wang, Banban & Wei, Jie & Taghizadeh-Hesary, Farhad, 2023. "The role of carbon pricing in achieving energy transition in the Post-COP26 era: Evidence from China's industrial energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    15. Tang, Erzi & Peng, Chong, 2017. "A macro- and microeconomic analysis of coal production in China," Resources Policy, Elsevier, vol. 51(C), pages 234-242.
    16. Atkin, David & Faber, Benjamin & Fally, Thibault & Gonzalez-Navarro, Marco, 2020. "A New Engel on Price Index and Welfare Estimation," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt5rn3m26v, Department of Agricultural & Resource Economics, UC Berkeley.
    17. Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).
    18. Julien Xavier Daubanes & Fanny Henriet & Katheline Schubert, 2017. "More Gas, Less Coal, and Less CO2? Unilateral CO2 Reduction Policy with More than One Carbon Energy Source," IFRO Working Paper 2017/09, University of Copenhagen, Department of Food and Resource Economics.
    19. Hu, Wenhao & Ho, Mun S. & Cao, Jing, 2019. "Energy consumption of urban households in China," China Economic Review, Elsevier, vol. 58(C).
    20. Xu, Shang & Zhang, Jun, 2023. "The welfare impacts of removing coal subsidies in rural China," Energy Economics, Elsevier, vol. 118(C).
    21. Li, Zheng-Zheng & Su, Chi-Wei & Chang, Tsangyao & Lobonţ, Oana-Ramona, 2022. "Policy-driven or market-driven? Evidence from steam coal price bubbles in China," Resources Policy, Elsevier, vol. 78(C).
    22. Ian W.H. Parry & Baoping Shang & Mr. Philippe Wingender & Nate Vernon & Tarun Narasimhan, 2016. "Climate Mitigation in China: Which Policies Are Most Effective?," IMF Working Papers 2016/148, International Monetary Fund.
    23. Zhu, Lin & Liao, Hua & Burke, Paul J., 2023. "Household fuel transitions have substantially contributed to child mortality reductions in China," World Development, Elsevier, vol. 164(C).
    24. Jianglong Li & Zhi Li, 2018. "Understanding the role of economic transition in enlarging energy price elasticity," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 26(2), pages 253-281, April.

  11. Xin Tang & Hua Liao, 2014. "Energy poverty and solid fuels use in rural China: Analysis based on national population census," CEEP-BIT Working Papers 57, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Hao, Yu & Wang, Ling'ou & Zhu, Lingyun & Ye, Minjie, 2018. "The dynamic relationship between energy consumption, investment and economic growth in China's rural area: New evidence based on provincial panel data," Energy, Elsevier, vol. 154(C), pages 374-382.
    2. Han, Jiashi & Hou, Xiaochao & Zhang, Lei, 2022. "Policy implications of China's rural household coal governance from the perspective of the spillover effect," Energy, Elsevier, vol. 242(C).
    3. Bingdong Hou & Xin Tang & Chunbo Ma & Li Liu & Yi-Ming Wei & Hua Liao, 2018. "Cooking fuel choice in rural China: results from microdata," CEEP-BIT Working Papers 110, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    4. Du, Juntao & Song, Malin & Xie, Bing, 2022. "Eliminating energy poverty in Chinese households: A cognitive capability framework," Renewable Energy, Elsevier, vol. 192(C), pages 373-384.
    5. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    6. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    7. Jin Liu & Bingdong Hou & Xiao-Wei Ma & Hua Liao, 2018. "Solid fuel use for cooking and its health effects on the elderly in rural China," CEEP-BIT Working Papers 111, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    8. Nie, Peng & Li, Qiaoge & Sousa-Poza, Alfonso, 2021. "Energy Poverty and Subjective Well-Being in China: New Evidence from the China Family Panel Studies," IZA Discussion Papers 14429, Institute of Labor Economics (IZA).
    9. Ang'u, Cohen & Muthama, Nzioka John & Mutuku, Mwanthi Alexander & M’IKiugu, Mutembei Henry, 2023. "Analysis of energy poverty in Kenya and its implications for human health," Energy Policy, Elsevier, vol. 176(C).
    10. Villalobos, Carlos & Chávez, Carlos & Uribe, Adolfo, 2021. "Energy poverty measures and the identification of the energy poor: A comparison between the utilitarian and capability-based approaches in Chile," Energy Policy, Elsevier, vol. 152(C).
    11. Wang, Shaobin & Zhao, Chao & Liu, Hanbin & Tian, Xinglei, 2021. "Exploring the spatial spillover effects of low-grade coal consumption and influencing factors in China," Resources Policy, Elsevier, vol. 70(C).
    12. Li, Meng & Jin, Tianyu & Liu, Shenglong & Zhou, Shaojie, 2021. "The cost of clean energy transition in rural China: Evidence based on marginal treatment effects," Energy Economics, Elsevier, vol. 97(C).
    13. Gu, Jiafeng, 2023. "Energy poverty and government subsidies in China," Energy Policy, Elsevier, vol. 180(C).
    14. Wang, Xiong & Yang, Wanping & Ren, Xiaohang & Lu, Zudi, 2023. "Can financial inclusion affect energy poverty in China? Evidence from a spatial econometric analysis," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 255-269.
    15. Yang, Xiaojun & Xu, Jintao & Xu, Xiaojie & Yi, Yuanyuan & Hyde, William F., 2020. "Collective forest tenure reform and household energy consumption: A case study in Yunnan Province, China," China Economic Review, Elsevier, vol. 60(C).
    16. Łukasz Mamica & Jakub Głowacki & Kamil Makieła, 2021. "Determinants of the Energy Poverty of Polish Students during the COVID-19 Pandemic," Energies, MDPI, vol. 14(11), pages 1-15, June.
    17. Li, Jinkai & Gao, Ming & Luo, Erga & Wang, Jingyi & Zhang, Xuebiao, 2023. "Does rural energy poverty alleviation really reduce agricultural carbon emissions? The case of China," Energy Economics, Elsevier, vol. 119(C).
    18. Darren McCauley & Rebecca Grant & Evance Mwathunga, 2022. "Achieving energy justice in Malawi: from key challenges to policy recommendations," Climatic Change, Springer, vol. 170(3), pages 1-22, February.
    19. Li, Jiajia & Li, Houjian, 2022. "Spiritual support or living support: Which alleviates solid fuel use for rural households in ethnical minority regions of China?," Renewable Energy, Elsevier, vol. 189(C), pages 479-491.
    20. Dong, Kangyin & Ren, Xiaohang & Zhao, Jun, 2021. "How does low-carbon energy transition alleviate energy poverty in China? A nonparametric panel causality analysis," Energy Economics, Elsevier, vol. 103(C).
    21. Zhang, Lingyue & Li, Hui & Chen, Tianqi & Liao, Hua, 2022. "Health effects of cooking fuel transition: A dynamic perspective," Energy, Elsevier, vol. 251(C).
    22. Ren, Yi-Shuai & Jiang, Yong & Narayan, Seema & Ma, Chao-Qun & Yang, Xiao-Guang, 2022. "Marketisation and rural energy poverty: Evidence from provincial panel data in China," Energy Economics, Elsevier, vol. 111(C).
    23. Zhang, Quanda & Appau, Samuelson & Kodom, Peter Lord, 2021. "Energy poverty, children's wellbeing and the mediating role of academic performance: Evidence from China," Energy Economics, Elsevier, vol. 97(C).
    24. Zhang, Dayong & Li, Jiajia & Han, Phoumin, 2019. "A multidimensional measure of energy poverty in China and its impacts on health: An empirical study based on the China family panel studies," Energy Policy, Elsevier, vol. 131(C), pages 72-81.
    25. Yanan Liu & Yixuan Gao & Yu Hao & Hua Liao, 2016. "The Relationship between Residential Electricity Consumption and Income: A Piecewise Linear Model with Panel Data," Energies, MDPI, vol. 9(10), pages 1-11, October.
    26. Wang, Chen & Engels, Anita & Wang, Zhaohua, 2018. "Overview of research on China's transition to low-carbon development: The role of cities, technologies, industries and the energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1350-1364.
    27. Oluwafemi Aladejuyigbe & Olawumi Dele Awolusi, 2021. "Global Energy Poverty: Nigeria as a Case Study," Information Management and Business Review, AMH International, vol. 13(3), pages 14-29.
    28. Tian, Zhihua & Tian, Yanfang & Shen, Liangping & Shao, Shuai, 2021. "The health effect of household cooking fuel choice in China: An urban-rural gap perspective," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    29. Khalid Waleed & Faisal Mehmood Mirza, 2023. "Examining fuel choice patterns through household energy transition index: an alternative to traditional energy ladder and stacking models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6449-6501, July.
    30. Rafi, Muhammed & Naseef, Mohemmad & Prasad, Salu, 2021. "Multidimensional energy poverty and human capital development: Empirical evidence from India," Energy Economics, Elsevier, vol. 101(C).
    31. Xiaohua, Wang & Kunquan, Li & Hua, Li & Di, Bai & Jingru, Liu, 2017. "Research on China’s rural household energy consumption – Household investigation of typical counties in 8 economic zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 28-32.
    32. Fu Wang & Hong Geng & Donglan Zha & Chaoqun Zhang, 2023. "Multidimensional Energy Poverty in China: Measurement and Spatio-Temporal Disparities Characteristics," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 168(1), pages 45-78, August.
    33. Boqiang Lin & Kai Wei, 2022. "Does Use of Solid Cooking Fuels Increase Family Medical Expenses in China?," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    34. Bing Wang & Hua-Nan Li & Xiao-Chen Yuan & Zhen-Ming Sun, 2017. "Energy Poverty in China: A Dynamic Analysis Based on a Hybrid Panel Data Decision Model," Energies, MDPI, vol. 10(12), pages 1-14, November.
    35. Wang, Wei & Xiao, Weiwei & Bai, Caiquan, 2022. "Can renewable energy technology innovation alleviate energy poverty? Perspective from the marketization level," Technology in Society, Elsevier, vol. 68(C).
    36. Sadath, Anver C. & Acharya, Rajesh H., 2017. "Assessing the extent and intensity of energy poverty using Multidimensional Energy Poverty Index: Empirical evidence from households in India," Energy Policy, Elsevier, vol. 102(C), pages 540-550.
    37. Yiming Xiao & Zhijun Feng & Xinying Li & Shangrui Wang, 2024. "Low-carbon transition and energy poverty: quasi-natural experiment evidence from China’s low-carbon city pilot policy," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-18, December.
    38. Qiutong Yu & Yuqing Cheng & Wei Li & Genyong Zuo, 2022. "Mediating Factors Explaining the Associations between Solid Fuel Use and Self-Rated Health among Chinese Adults 65 Years and Older: A Structural Equation Modeling Approach," IJERPH, MDPI, vol. 19(11), pages 1-10, June.
    39. Hua Liao & Xin Tang & Yi-Ming Wei, 2016. "Solid fuel use in rural China and its health effects," CEEP-BIT Working Papers 90, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    40. Tiwari, Sunil & Si Mohammed, Kamel & Guesmi, Khaled, 2023. "A way forward to end energy poverty in China: Role of carbon-cutting targets and net-zero commitments," Energy Policy, Elsevier, vol. 180(C).
    41. Hong, Xudong & Wu, Shengnan & Zhang, Xueliang, 2022. "Clean energy powers energy poverty alleviation: Evidence from Chinese micro-survey data," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    42. Hou, Bingdong & Zhang, Lingyue & Ai, Xianneng & Li, Hui, 2021. "Impact of city gas on mortality in China: National and regional estimates," Energy Policy, Elsevier, vol. 156(C).
    43. Carlos Villalobos Barría & Carlos Chávez & Adolfo Uribe, 2019. "Energy poverty measures and the identification of the energy poor: A comparison between the utilitarian and multidimensional approaches in Chile," Ibero America Institute for Econ. Research (IAI) Discussion Papers 243, Ibero-America Institute for Economic Research.
    44. Li, Wenli & Yu, Youping & He, Qiang & Xu, Dingde & Qi, Yanbin & Deng, Xin, 2023. "Impact of clean energy use on the subjective health of household members: Empirical evidence from rural China," Energy, Elsevier, vol. 263(PD).
    45. Li, Yunwei & Chen, Kui & Ding, Ruixin & Zhang, Jing & Hao, Yu, 2023. "How do photovoltaic poverty alleviation projects relieve household energy poverty? Evidence from China," Energy Economics, Elsevier, vol. 118(C).
    46. Chen, Yilin & Shen, Huizhong & Zhong, Qirui & Chen, Han & Huang, Tianbo & Liu, Junfeng & Cheng, Hefa & Zeng, Eddy Y. & Smith, Kirk R. & Tao, Shu, 2016. "Transition of household cookfuels in China from 2010 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 800-809.
    47. Ao, Chon-Kit & Dong, Yilin & Kuo, Pei-Fen, 2021. "Industrialization, indoor and ambient air quality, and elderly mental health," China Economic Review, Elsevier, vol. 69(C).
    48. Lin, Boqiang & Wang, Yao, 2020. "Does energy poverty really exist in China? From the perspective of residential electricity consumption," Energy Policy, Elsevier, vol. 143(C).
    49. Jiang, Lu & Yu, Lu & Xue, Bing & Chen, Xingpeng & Mi, Zhifu, 2020. "Who is energy poor? Evidence from the least developed regions in China," Energy Policy, Elsevier, vol. 137(C).
    50. Siyou Xia & Yu Yang & Xiaoying Qian & Xin Xu, 2022. "Spatiotemporal Interaction and Socioeconomic Determinants of Rural Energy Poverty in China," IJERPH, MDPI, vol. 19(17), pages 1-15, August.

  12. Yu Hao & Hua Liao & Yi-Ming Wei, 2014. "Is China's carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," CEEP-BIT Working Papers 71, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Longyu Shi & Fengmei Yang & Lijie Gao, 2020. "The Allocation of Carbon Intensity Reduction Target by 2030 among Cities in China," Energies, MDPI, vol. 13(22), pages 1-14, November.
    2. Ning, Yadong & Chen, Kunkun & Zhang, Boya & Ding, Tao & Guo, Fei & Zhang, Ming, 2020. "Energy conservation and emission reduction path selection in China: A simulation based on Bi-Level multi-objective optimization model," Energy Policy, Elsevier, vol. 137(C).
    3. Jian-Xin Wu & Ling-Yun He, 2016. "The distribution dynamics of Carbon Dioxide Emission intensity across Chinese provinces: A weighted Approach," Papers 1612.02658, arXiv.org.
    4. Wang, Zhaohua & Huang, Wanjing & Chen, Zhongfei, 2019. "The peak of CO2 emissions in China: A new approach using survival models," Energy Economics, Elsevier, vol. 81(C), pages 1099-1108.
    5. Karakaya, Etem & Yılmaz, Burcu & Alataş, Sedat, 2018. "How Production Based and Consumption Based Emissions Accounting Systems Change Climate Policy Analysis: The Case of CO2 Convergence," MPRA Paper 88781, University Library of Munich, Germany.
    6. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    7. Jie Zhang & Lu Zhang, 2016. "Impacts on CO 2 Emission Allowance Prices in China: A Quantile Regression Analysis of the Shanghai Emission Trading Scheme," Sustainability, MDPI, vol. 8(11), pages 1-12, November.
    8. Chen, Jiandong & Cheng, Shulei & Song, Malin & Wu, Yinyin, 2016. "A carbon emissions reduction index: Integrating the volume and allocation of regional emissions," Applied Energy, Elsevier, vol. 184(C), pages 1154-1164.
    9. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    10. Francesch-Huidobro, Maria, 2016. "Climate change and energy policies in Shanghai: A multilevel governance perspective," Applied Energy, Elsevier, vol. 164(C), pages 45-56.
    11. Hao, Yu & Peng, Hui, 2017. "On the convergence in China's provincial per capita energy consumption: New evidence from a spatial econometric analysis," Energy Economics, Elsevier, vol. 68(C), pages 31-43.
    12. Ji, Xiang & Li, Guo & Wang, Zhaohua, 2017. "Allocation of emission permits for China’s power plants: A systemic Pareto optimal method," Applied Energy, Elsevier, vol. 204(C), pages 607-619.
    13. Han, Rong & Li, Jianglong & Guo, Zhi, 2022. "Optimal quota in China's energy capping policy in 2030 with renewable targets and sectoral heterogeneity," Energy, Elsevier, vol. 239(PA).
    14. Tsun Se Cheong & Yanrui Wu & Jianxin Wu, 2016. "Evolution of carbon dioxide emissions in Chinese cities: trends and transitional dynamics," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 21(3), pages 357-377, July.
    15. Chang, Kai & Chang, Hao, 2016. "Cutting CO2 intensity targets of interprovincial emissions trading in China," Applied Energy, Elsevier, vol. 163(C), pages 211-221.
    16. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    17. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    18. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    19. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    20. Luo, Yusen & Lu, Zhengnan & Wu, Chao, 2023. "Can internet development accelerate the green innovation efficiency convergence: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    21. Shiwei Yu & Xing Hu & Xuejiao Zhang & Zhenxi Li, 2019. "Convergence of per capita carbon emissions in the Yangtze River Economic Belt, China," Energy & Environment, , vol. 30(5), pages 776-799, August.
    22. Ping Wang & Bangzhu Zhu, 2016. "Estimating the Contribution of Industry Structure Adjustment to the Carbon Intensity Target: A Case of Guangdong," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    23. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.
    24. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    25. Michał Gostkowski & Tomasz Rokicki & Luiza Ochnio & Grzegorz Koszela & Kamil Wojtczuk & Marcin Ratajczak & Hubert Szczepaniuk & Piotr Bórawski & Aneta Bełdycka-Bórawska, 2021. "Clustering Analysis of Energy Consumption in the Countries of the Visegrad Group," Energies, MDPI, vol. 14(18), pages 1-25, September.
    26. Jia, Ruining & Shao, Shuai & Yang, Lili, 2021. "High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach," Energy Economics, Elsevier, vol. 99(C).
    27. Hanhua Shao & Jixin Cheng & Yuansheng Wang & Xiaoming Li, 2022. "Can Digital Finance Promote Comprehensive Carbon Emission Performance? Evidence from Chinese Cities," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    28. Chiu-Ming Hsiao, 2022. "Economic Growth, CO 2 Emissions Quota and Optimal Allocation under Uncertainty," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    29. Chen, Jiandong & Xu, Chong & Huang, Shuo & Shen, Zhiyang & Song, Malin & Wang, Shiqi, 2022. "Adjusted carbon intensity in China: Trend, driver, and network," Energy, Elsevier, vol. 251(C).
    30. Xie, Qichang & Ma, Di & Raza, Muhammad Yousaf & Tang, Songlin & Bai, Dingchuan, 2023. "Toward carbon peaking and neutralization: The heterogeneous stochastic convergence of CO2 emissions and the role of digital inclusive finance," Energy Economics, Elsevier, vol. 125(C).
    31. Behrang Vand & Aira Hast & Sanaz Bozorg & Zelin Li & Sanna Syri & Shuai Deng, 2019. "Consumers’ Attitudes to Support Green Energy: A Case Study in Shanghai," Energies, MDPI, vol. 12(12), pages 1-20, June.
    32. Parker, Steven & Bhatti, M. Ishaq, 2020. "Dynamics and drivers of per capita CO2 emissions in Asia," Energy Economics, Elsevier, vol. 89(C).
    33. Xinghua Wang & Shunchen Wu & Xiaojuan Qin & Meixiang La & Haixia Zuo, 2022. "Informal Environment Regulation, Green Technology Innovation and Air Pollution: Quasi-Natural Experiments from Prefectural Cities in China," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
    34. Pan Zhang & Jiannan Wu, 2018. "Performance-Based or Politic-Related Decomposition of Environmental Targets: A Multilevel Analysis in China," Sustainability, MDPI, vol. 10(10), pages 1-16, September.
    35. Meng Sun & Yue Zhang & Yaqi Hu & Jiayi Zhang, 2022. "Spatial Convergence of Carbon Productivity: Theoretical Analysis and Chinese Experience," IJERPH, MDPI, vol. 19(8), pages 1-19, April.
    36. Zheng, Shenglin & Yuan, Rong, 2023. "Sectoral convergence analysis of China's emissions intensity and its implications," Energy, Elsevier, vol. 262(PB).
    37. Wu, Ya & Zhang, Wanying, 2016. "The driving factors behind coal demand in China from 1997 to 2012: An empirical study of input-output structural decomposition analysis," Energy Policy, Elsevier, vol. 95(C), pages 126-134.
    38. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Meng, Bo, 2021. "Attribution of changes in an intensity index," Energy, Elsevier, vol. 216(C).
    39. Hao, Yu & Zhang, Zong-Yong & Yang, Chuxiao & Wu, Haitao, 2021. "Does structural labor change affect CO2 emissions? Theoretical and empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    40. Shen, Neng & Peng, Hui & Wang, Qunwei, 2021. "Spatial dependence, agglomeration externalities and the convergence of carbon productivity," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    41. Qiang Du & Min Wu & Yadan Xu & Xinran Lu & Libiao Bai & Ming Yu, 2018. "Club convergence and spatial distribution dynamics of carbon intensity in China’s construction industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 519-536, November.
    42. Thomakos, Dimitrios D. & Alexopoulos, Thomas A., 2016. "Carbon intensity as a proxy for environmental performance and the informational content of the EPI," Energy Policy, Elsevier, vol. 94(C), pages 179-190.

  13. Yi-Xuan Gao & Hua Liao & Paul J. Burke & Yi-Ming Wei, 2014. "Road transport energy consumption in the G7 and BRICS: 1973-2010," CEEP-BIT Working Papers 79, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Samir, Saidi & Shahbaz, Muhammad & Akhtar, Pervaiz, 2018. "The Long-Run Relationship between Transport Energy Consumption and Transport Infrastructure on Economic Growth in MENA Countries," MPRA Paper 85037, University Library of Munich, Germany, revised 06 Mar 2018.
    2. Paul J. Burke & Zsuzsanna Csereklyei, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," CAMA Working Papers 2016-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Samir Saidi, 2021. "Freight transport and energy consumption: What impact on carbon dioxide emissions and environmental quality in MENA countries?," Economic Change and Restructuring, Springer, vol. 54(4), pages 1119-1145, November.
    4. Saidi, Samir & Shahbaz, Muhammad & Akhtar, Pervaiz, 2018. "The long-run relationships between transport energy consumption, transport infrastructure, and economic growth in MENA countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 78-95.
    5. Malik, Afia, 2018. "Fuel Demand in Pakistan's TRansport Sector," MPRA Paper 103455, University Library of Munich, Germany.
    6. Rohan Best, 2017. "Switching towards coal or renewable energy? The effects of financial capital on energy transitions," Departmental Working Papers 2017-02, The Australian National University, Arndt-Corden Department of Economics.

  14. Yu Hao & Zong-Yong Zhang & Hua Liao & Yi-Ming Wei, 2014. "China's Farewell to Coal: A Forecast of Coal Consumption through 2020," CEEP-BIT Working Papers 76, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Zhang, Yanfang & Shi, Xunpeng & Qian, Xiangyan & Chen, Sai & Nie, Rui, 2021. "Macroeconomic effect of energy transition to carbon neutrality: Evidence from China's coal capacity cut policy," Energy Policy, Elsevier, vol. 155(C).
    2. Shi, Xunpeng & Yu, Jian & Cheong, Tsun Se, 2020. "Convergence and distribution dynamics of energy consumption among China's households," Energy Policy, Elsevier, vol. 142(C).
    3. Lingyun He & Zhangqi Zhong & Fang Yin & Deqing Wang, 2018. "Impact of Energy Consumption on Air Quality in Jiangsu Province of China," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    4. Zhao, Changhong & Zhang, Weirong & Wang, Yang & Liu, Qilin & Guo, Jingsheng & Xiong, Minpeng & Yuan, Jiahai, 2017. "The economics of coal power generation in China," Energy Policy, Elsevier, vol. 105(C), pages 1-9.
    5. Yuan, Jiahai & Wang, Yang & Zhang, Weirong & Zhao, Changhong & Liu, Qian & Shen, Xinyi & Zhang, Kai & Dong, Liansai, 2017. "Will recent boom in coal power lead to a bust in China? A micro-economic analysis," Energy Policy, Elsevier, vol. 108(C), pages 645-656.
    6. Burke, Paul J. & Liao, Hua, 2015. "Is the price elasticity of demand for coal in China increasing?," China Economic Review, Elsevier, vol. 36(C), pages 309-322.
    7. Liu, Yiming & Hao, Yu & Gao, Yixuan, 2017. "The environmental consequences of domestic and foreign investment: Evidence from China," Energy Policy, Elsevier, vol. 108(C), pages 271-280.
    8. Sibande, Xolani & Demirer, Riza & Balcilar, Mehmet & Gupta, Rangan, 2023. "On the pricing effects of bitcoin mining in the fossil fuel market: The case of coal," Resources Policy, Elsevier, vol. 85(PB).
    9. Zaman, Rafia & Brudermann, Thomas & Kumar, S. & Islam, Nazrul, 2018. "A multi-criteria analysis of coal-based power generation in Bangladesh," Energy Policy, Elsevier, vol. 116(C), pages 182-192.
    10. Huadong Gao & Baifu An & Zhen Han & Yachao Guo & Zeyu Ruan & Wei Li & Samuel Zayzay, 2020. "The Sustainable Development of Aged Coal Mine Achieved by Recovering Pillar-Blocked Coal Resources," Energies, MDPI, vol. 13(15), pages 1-12, July.
    11. Meizhen Zhang & Tao Lv & Xu Deng & Yuanxu Dai & Muhammad Sajid, 2019. "Diffusion of China’s coal-fired power generation technologies: historical evolution and development trends," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 7-23, January.
    12. Tang, Xu & Snowden, Simon & McLellan, Benjamin C. & Höök, Mikael, 2015. "Clean coal use in China: Challenges and policy implications," Energy Policy, Elsevier, vol. 87(C), pages 517-523.
    13. D. Jingyuan I. & L. Chong I. & L. Marsiliani & D. Jingyuan I. & L. Chong I. & L. Marsiliani, 2018. "Взаимосвязь между экономическим ростом и окружающей средой в Пекине на основе показателя PM2.5 // The Relationship between Growth and the Environment in Beijing, Using PM2.5 Concentrations," Review of Business and Economics Studies // Review of Business and Economics Studies, Финансовый Университет // Financial University, vol. 6(2), pages 5-18.
    14. Wang, Ce & Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2018. "Has China’s coal consumption already peaked? A demand-side analysis based on hybrid prediction models," Energy, Elsevier, vol. 162(C), pages 272-281.
    15. Fan, Xinghua & Wang, Li & Li, Shasha, 2016. "Predicting chaotic coal prices using a multi-layer perceptron network model," Resources Policy, Elsevier, vol. 50(C), pages 86-92.
    16. Chanyuan Liu & Long Xin & Jinye Li & Huaping Sun, 2022. "The Impact of Renewable Energy Technology Innovation on Industrial Green Transformation and Upgrading: Beggar Thy Neighbor or Benefiting Thy Neighbor," Sustainability, MDPI, vol. 14(18), pages 1-28, September.
    17. Liu, Dunnan & Zhao, Weidong & Li, Zhihao & Xu, Xiaofeng & Xiao, Bowen & Niu, Dongxiao, 2018. "Can hydropower develop as expected in China? A scenario analysis based on system dynamics model," Energy, Elsevier, vol. 161(C), pages 118-129.
    18. Jia, Zong-qian & Zhou, Zhi-fang & Zhang, Hong-jie & Li, Bo & Zhang, You-xian, 2020. "Forecast of coal consumption in Gansu Province based on Grey-Markov chain model," Energy, Elsevier, vol. 199(C).
    19. Zhang, Lixiao & Yang, Min & Zhang, Pengpeng & Hao, Yan & Lu, Zhongming & Shi, Zhimin, 2021. "De-coal process in urban China: What can we learn from Beijing's experience?," Energy, Elsevier, vol. 230(C).
    20. Baskoro, Firly Rachmaditya & Takahashi, Katsuhiko & Morikawa, Katsumi & Nagasawa, Keisuke, 2021. "System dynamics approach in determining coal utilization scenario in Indonesia," Resources Policy, Elsevier, vol. 73(C).
    21. Chai, Jian & Du, Mengfan & Liang, Ting & Sun, Xiaojie Christine & Yu, Ji & Zhang, Zhe George, 2019. "Coal consumption in China: How to bend down the curve?," Energy Economics, Elsevier, vol. 80(C), pages 38-47.
    22. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.
    23. Abdul Rehman & Hengyun Ma & Magdalena Radulescu & Crenguta Ileana Sinisi & Zahid Yousaf, 2021. "Energy Crisis in Pakistan and Economic Progress: Decoupling the Impact of Coal Energy Consumption in Power and Brick Kilns," Mathematics, MDPI, vol. 9(17), pages 1-15, August.
    24. Hao, Yu & Zhang, Tianli & Jing, Leijie & Xiao, Linqi, 2019. "Would the decoupling of electricity occur along with economic growth? Empirical evidence from the panel data analysis for 100 Chinese cities," Energy, Elsevier, vol. 180(C), pages 615-625.
    25. Xiang, Hongjin & Kuang, Yanxiang & He, Hongbo & Yao, Shujie, 2022. "Could tariffs reduce overcapacity and environmental pollution? Evidence from China’s adjustment of tariffs on coal," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 129-144.
    26. Ouyang, Xiaoling & Wei, Xiaoyun & Sun, Chuanwang & Du, Gang, 2018. "Impact of factor price distortions on energy efficiency: Evidence from provincial-level panel data in China," Energy Policy, Elsevier, vol. 118(C), pages 573-583.
    27. Mohamad Taghvaee, Vahid & Seifi Aloo, Alireza & Khodaparast Shirazi, Jalil, 2016. "Energy, Environment, and Economy Interactions in Iran with Cointegrated and ECM Simultaneous Model," MPRA Paper 70508, University Library of Munich, Germany.
    28. Ma, Gang & Li, Xu & Zheng, Jianping, 2020. "Efficiency and equity in regional coal de-capacity allocation in China: A multiple objective programming model based on Gini coefficient and Data Envelopment Analysis," Resources Policy, Elsevier, vol. 66(C).
    29. Lu, Zhijian & Shao, Shuai, 2016. "Impacts of government subsidies on pricing and performance level choice in Energy Performance Contracting: A two-step optimal decision model," Applied Energy, Elsevier, vol. 184(C), pages 1176-1183.
    30. Xuguang Hao & Mei Song & Yunan Feng & Wen Zhang, 2019. "De-Capacity Policy Effect on China’s Coal Industry," Energies, MDPI, vol. 12(12), pages 1-16, June.
    31. Zhang Chenghu & Muhammad Arif & Khurram Shehzad & Mahmood Ahmad & Judit Oláh, 2021. "Modeling the Dynamic Linkage between Tourism Development, Technological Innovation, Urbanization and Environmental Quality: Provincial Data Analysis of China," IJERPH, MDPI, vol. 18(16), pages 1-21, August.
    32. Wu, Haitao & Xu, Lina & Ren, Siyu & Hao, Yu & Yan, Guoyao, 2020. "How do energy consumption and environmental regulation affect carbon emissions in China? New evidence from a dynamic threshold panel model," Resources Policy, Elsevier, vol. 67(C).
    33. Zhang, Kun & Zhang, Zong-Yong & Liang, Qiao-Mei, 2017. "An empirical analysis of the green paradox in China: From the perspective of fiscal decentralization," Energy Policy, Elsevier, vol. 103(C), pages 203-211.
    34. Wang, Di & Shen, Ye & Zhao, Yueying & He, Wei & Liu, Xue & Qian, Xiangyan & Lv, Tao, 2020. "Integrated assessment and obstacle factor diagnosis of China's scientific coal production capacity based on the PSR sustainability framework," Resources Policy, Elsevier, vol. 68(C).
    35. Qiao, Hui & Chen, Siyu & Dong, Xiucheng & Dong, Kangyin, 2019. "Has China's coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity," Energy Economics, Elsevier, vol. 84(C).
    36. Xiangyu Teng & Fan‐peng Liu & Yung‐ho Chiu, 2020. "The impact of coal and non‐coal consumption on China's energy performance improvement," Natural Resources Forum, Blackwell Publishing, vol. 44(4), pages 334-352, November.
    37. Zhang, Yujiang & Feng, Guorui & Zhang, Min & Ren, Hongrui & Bai, Jinwen & Guo, Yuxia & Jiang, Haina & Kang, Lixun, 2016. "Residual coal exploitation and its impact on sustainable development of the coal industry in China," Energy Policy, Elsevier, vol. 96(C), pages 534-541.
    38. Li, Zheng-Zheng & Su, Chi-Wei & Chang, Tsangyao & Lobonţ, Oana-Ramona, 2022. "Policy-driven or market-driven? Evidence from steam coal price bubbles in China," Resources Policy, Elsevier, vol. 78(C).
    39. Ahmad Farabi & Azrai Abdullah & Rahmat Heru Setianto, 2019. "Energy Consumption, Carbon Emissions and Economic Growth in Indonesia and Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 338-345.
    40. Wang, Xiaoyu & Luo, Dongkun & Zhao, Xu & Sun, Zhu, 2018. "Estimates of energy consumption in China using a self-adaptive multi-verse optimizer-based support vector machine with rolling cross-validation," Energy, Elsevier, vol. 152(C), pages 539-548.
    41. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    42. Li, Haoran & Cui, Xueqin & Hui, Jingxuan & He, Gang & Weng, Yuwei & Nie, Yaoyu & Wang, Can & Cai, Wenjia, 2021. "Catchment-level water stress risk of coal power transition in China under 2℃/1.5℃ targets," Applied Energy, Elsevier, vol. 294(C).
    43. Tian-Tian Li & Yun-Ze Li & Zhuang-Zhuang Zhai & En-Hui Li & Tong Li, 2019. "Energy-Saving Strategies and their Energy Analysis and Exergy Analysis for In Situ Thermal Remediation System of Polluted-Soil," Energies, MDPI, vol. 12(20), pages 1-28, October.
    44. Yuan, Xiao-Chen & Sun, Xun & Zhao, Weigang & Mi, Zhifu & Wang, Bing & Wei, Yi-Ming, 2017. "Forecasting China’s regional energy demand by 2030: A Bayesian approach," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 85-95.
    45. Zhang, Yanfang & Gao, Qi & Wei, Jinpeng & Shi, Xunpeng & Zhou, Dequn, 2023. "Can China's energy-consumption permit trading scheme achieve the “Porter” effect? Evidence from an estimated DSGE model," Energy Policy, Elsevier, vol. 180(C).
    46. Zhang, Xiaohan & Winchester, Niven & Zhang, Xiliang, 2017. "The future of coal in China," Energy Policy, Elsevier, vol. 110(C), pages 644-652.
    47. Hui Yu & Wei Wang & Baohua Yang & Cunfang Li, 2019. "Evolutionary Game Analysis of the Stress Effect of Cross-Regional Transfer of Resource-Exhausted Enterprises," Complexity, Hindawi, vol. 2019, pages 1-16, November.
    48. Xie, Minghua & Yi, Xiangyu & Liu, Kui & Sun, Chuanwang & Kong, Qingbao, 2023. "How much natural gas does China need: An empirical study from the perspective of energy transition," Energy, Elsevier, vol. 266(C).
    49. Yu Hao & Shang Gao & Yunxia Guo & Zhiqiang Gai & Haitao Wu, 2021. "Measuring the nexus between economic development and environmental quality based on environmental Kuznets curve: a comparative study between China and Germany for the period of 2000–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16848-16873, November.
    50. Zhang, Jinning & Wang, Jianlong & Yang, Xiaodong & Ren, Siyu & Ran, Qiying & Hao, Yu, 2021. "Does local government competition aggravate haze pollution? A new perspective of factor market distortion," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    51. Wu, Ya & Zhang, Wanying, 2016. "The driving factors behind coal demand in China from 1997 to 2012: An empirical study of input-output structural decomposition analysis," Energy Policy, Elsevier, vol. 95(C), pages 126-134.
    52. Shi, Xunpeng & Rioux, Bertrand & Galkin, Philipp, 2018. "Unintended consequences of China’s coal capacity cut policy," Energy Policy, Elsevier, vol. 113(C), pages 478-486.
    53. Junfeng Zhang & Hong Fang & Bo Peng & Xu Wang & Siran Fang, 2016. "Productivity Growth-Accounting for Undesirable Outputs and Its Influencing Factors: The Case of China," Sustainability, MDPI, vol. 8(11), pages 1-13, November.
    54. Kurniawan, Robi & Managi, Shunsuke, 2018. "Coal consumption, urbanization, and trade openness linkage in Indonesia," Energy Policy, Elsevier, vol. 121(C), pages 576-583.
    55. Yujing Liu & Ruoyun Du & Dongxiao Niu, 2022. "Forecast of Coal Demand in Shanxi Province Based on GA—LSSVM under Multiple Scenarios," Energies, MDPI, vol. 15(17), pages 1-16, September.

  15. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2014. "Regional efforts to mitigate climate change in China: A multi-criteria assessment approach," CEEP-BIT Working Papers 77, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Chen, Hao & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2016. "A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China," Applied Energy, Elsevier, vol. 183(C), pages 1333-1345.
    2. Xin Li & Xiandan Cui & Minxi Wang, 2017. "Analysis of China’s Carbon Emissions Base on Carbon Flow in Four Main Sectors: 2000–2013," Sustainability, MDPI, vol. 9(4), pages 1-13, April.
    3. Sun, Jiasen & Li, Guo & Wang, Zhaohua, 2018. "Optimizing China’s energy consumption structure under energy and carbon constraints," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 57-72.
    4. Dongxu Chen & Xiaoying Chang & Tao Hong & Tao Ma, 2023. "Domestic Regional Synergy in Achieving National Climate Goals—The Role of Comparative Advantage in Emission Reduction," Land, MDPI, vol. 12(9), pages 1-23, September.
    5. Da Huang & Mei Han, 2021. "Research on Evaluation Method of Freight Transportation Environmental Sustainability," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    6. Huang, Jian-Bai & Luo, Yu-Mei & Feng, Chao, 2019. "An overview of carbon dioxide emissions from China's ferrous metal industry: 1991-2030," Resources Policy, Elsevier, vol. 62(C), pages 541-549.
    7. Elia A Machado & Samuel Ratick, 2018. "Implications of indicator aggregation methods for global change vulnerability reduction efforts," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(7), pages 1109-1141, October.
    8. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    9. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    10. Franciely Velozo Aragão & Daiane Maria de Genaro Chiroli & Fernanda Cavicchioli Zola & Emanuely Velozo Aragão & Luis Henrique Nogueira Marinho & Ana Lidia Cascales Correa & João Carlos Colmenero, 2023. "Smart Cities Maturity Model—A Multicriteria Approach," Sustainability, MDPI, vol. 15(8), pages 1-20, April.
    11. Li Chen & Bin Jiang & Chuan Wang, 2023. "Climate change and urban total factor productivity: evidence from capital cities and municipalities in China," Empirical Economics, Springer, vol. 65(1), pages 401-441, July.
    12. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    13. Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    14. Bing Wang & Hua-Nan Li & Xiao-Chen Yuan & Zhen-Ming Sun, 2017. "Energy Poverty in China: A Dynamic Analysis Based on a Hybrid Panel Data Decision Model," Energies, MDPI, vol. 10(12), pages 1-14, November.
    15. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    16. Jing-Li Fan & Jian-Da Wang & Ling-Si Kong & Xian Zhang, 2018. "The carbon footprints of secondary industry in China: an input–output subsystem analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 635-657, March.
    17. Boqiang Lin & Weisheng Liu, 2017. "Scenario Prediction of Energy Consumption and CO 2 Emissions in China’s Machinery Industry," Sustainability, MDPI, vol. 9(1), pages 1-18, January.
    18. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    19. Li, Kai & Qi, Shouzhou & Shi, Xunpeng, 2023. "Environmental policies and low-carbon industrial upgrading: Heterogenous effects among policies, sectors, and technologies in China," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    20. Jin-Wei Wang & Hua Liao & Bao-Jun Tang & Ruo-Yu Ke & Yi-Ming Wei, 2017. "Is the CO2 Emissions Reduction from Scale Change, Structural Change or Technology Change? Evidence from Non-metallic Sector of 11 Major Economies in 1995-2009," CEEP-BIT Working Papers 101, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    21. Qunli Wu & Chenyang Peng, 2016. "Scenario Analysis of Carbon Emissions of China’s Electric Power Industry Up to 2030," Energies, MDPI, vol. 9(12), pages 1-18, November.

  16. Jing Tian & Hua Liao & Ce Wang, 2014. "Spatial-Temporal Variations of Embodied Carbon Emission in Global Trade Flows: 41 Economies and 35 Sectors," CEEP-BIT Working Papers 78, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Sajid, M. Jawad & Cao, Qingren & Kang, Wei, 2019. "Transport sector carbon linkages of EU's top seven emitters," Transport Policy, Elsevier, vol. 80(C), pages 24-38.
    2. Zhong, Zhangqi & Guo, Zhifang & Zhang, Jianwu, 2021. "Does the participation in global value chains promote interregional carbon emissions transferring via trade? Evidence from 39 major economies," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    3. Zhang, Lulu & Yu, Chang & Cheng, Baodong & Yang, Chao & Chang, Yuan, 2020. "Mitigating climate change by global timber carbon stock: Accounting, flow and allocation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Fan, Jing-Li & Hou, Yun-Bing & Wang, Qian & Wang, Ce & Wei, Yi-Ming, 2016. "Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison," Applied Energy, Elsevier, vol. 184(C), pages 790-799.
    5. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    6. Yang, Di & Luan, Weixin & Qiao, Lu & Pratama, Mahardhika, 2020. "Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery," Applied Energy, Elsevier, vol. 268(C).
    7. Tang, Zhipeng & Yu, Haojie & Zou, Jialing, 2022. "How does production substitution affect China's embodied carbon emissions in exports?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Hua Liao & Celio Andrade & Julio Lumbreras & Jing Tian, 2018. "CO2 Emissions in Beijing: Sectoral Linkages and Demand Drivers," CEEP-BIT Working Papers 113, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    9. Guangyu Luo & Jia-Hsi Weng & Qianxue Zhang & Yu Hao, 2017. "A reexamination of the existence of environmental Kuznets curve for CO2 emissions: evidence from G20 countries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1023-1042, January.
    10. Wang, Zhenyu & Meng, Jing & Zheng, Heran & Shao, Shuai & Wang, Daoping & Mi, Zhifu & Guan, Dabo, 2018. "Temporal change in India’s imbalance of carbon emissions embodied in international trade," Applied Energy, Elsevier, vol. 231(C), pages 914-925.
    11. Jing-Li Fan & Qian Wang & Shiwei Yu & Yun-Bing Hou & Yi-Ming Wei, 2017. "The evolution of CO2 emissions in international trade for major economies: a perspective from the global supply chain," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(8), pages 1229-1248, December.
    12. Lanhui Wang & Zichan Cui & Jari Kuuluvainen & Yongyu Sun, 2021. "Does Forest Industries in China Become Cleaner? A Prospective of Embodied Carbon Emission," Sustainability, MDPI, vol. 13(4), pages 1-11, February.
    13. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    14. Bin Wang & Dechun Huang & Chuanhao Fan & Zhencheng Xing, 2021. "Peak of SO 2 Emissions Embodied in International Trade: Patterns, Drivers and Implications," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    15. Chuanwang Sun & Lanyun Chen & Guangxiao Huang, 2019. "Decomposition Analysis of CO 2 Emissions Embodied in the International Trade of Russia," Sustainability, MDPI, vol. 12(1), pages 1-22, December.

  17. Ce Wang & Hua Liao & Su-Yan Pan & Lu-Tao Zhao & Yi-Ming Wei, 2014. "The fluctuations of China's energy intensity: Biased technical change," CEEP-BIT Working Papers 56, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Azlina Abdullah & Hussain Ali Bekhet, 2019. "Investigating the Driving Forces of Energy Intensity Change in Malaysia 1991-2010: A Structural Decomposition Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 121-130.
    2. Chao Bi & Minna Jia & Jingjing Zeng, 2019. "Nonlinear Effect of Public Infrastructure on Energy Intensity in China: A Panel Smooth Transition Regression Approach," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
    3. Zhang, Dayong & Li, Jun & Ji, Qiang, 2020. "Does better access to credit help reduce energy intensity in China? Evidence from manufacturing firms," Energy Policy, Elsevier, vol. 145(C).
    4. Song, Yan & Zhu, Jing & Yue, Qian & Zhang, Ming & Wang, Longke, 2023. "Industrial agglomeration, technological innovation and air pollution: Empirical evidence from 277 prefecture-level cities in China," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 240-252.
    5. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    6. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2017. "Energy biased technology change: Focused on Chinese energy-intensive industries," Applied Energy, Elsevier, vol. 190(C), pages 1081-1089.
    7. Jin, Yi & Gao, Xiaoyan & Wang, Min, 2021. "The financing efficiency of listed energy conservation and environmental protection firms: Evidence and implications for green finance in China," Energy Policy, Elsevier, vol. 153(C).
    8. Huang, Jian-Bai & Luo, Yu-Mei & Feng, Chao, 2019. "An overview of carbon dioxide emissions from China's ferrous metal industry: 1991-2030," Resources Policy, Elsevier, vol. 62(C), pages 541-549.
    9. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    10. Zhang, Dayong & Cao, Hong & Wei, Yi-Ming, 2016. "Identifying the determinants of energy intensity in China: A Bayesian averaging approach," Applied Energy, Elsevier, vol. 168(C), pages 672-682.
    11. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2018. "Energy-biased technical change in the Chinese industrial sector with CES production functions," Energy, Elsevier, vol. 148(C), pages 896-903.
    12. Chen, Yu & Lin, Boqiang, 2021. "Understanding the green total factor energy efficiency gap between regional manufacturing—insight from infrastructure development," Energy, Elsevier, vol. 237(C).
    13. Zhou, Yang & Liu, Yansui, 2016. "Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China," Applied Energy, Elsevier, vol. 180(C), pages 800-809.
    14. Zhang, Wei & Zhang, Ting & Li, Hangyu & Zhang, Han, 2022. "Dynamic spillover capacity of R&D and digital investments in China's manufacturing industry under long-term technological progress based on the industry chain perspective," Technology in Society, Elsevier, vol. 71(C).
    15. Li, Meng & Gao, Yuning & Liu, Shenglong, 2020. "China’s energy intensity change in 1997–2015: Non-vertical adjusted structural decomposition analysis based on input-output tables," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 222-236.
    16. Ai, Hongshan & Wang, Mengyuan & Zhang, Yue-Jun & Zhu, Tian-Tian, 2022. "How does air pollution affect urban innovation capability? Evidence from 281 cities in China," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 166-178.

  18. Hua Liao & Yi-Ming Wei, 2012. "Will the aggregation approach affect energy efficiency performance assessment?," CEEP-BIT Working Papers 30, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Chen, Zhan-Ming, 2014. "Inflationary effect of coal price change on the Chinese economy," Applied Energy, Elsevier, vol. 114(C), pages 301-309.
    2. Wu, Kaiyao & Shi, Jiyuan & Yang, Tinggan, 2017. "Has energy efficiency performance improved in China?—non-energy sectors evidence from sequenced hybrid energy use tables," Energy Economics, Elsevier, vol. 67(C), pages 169-181.
    3. Wang, Bing & Wang, Qian & Wei, Yi-Ming & Li, Zhi-Ping, 2018. "Role of renewable energy in China’s energy security and climate change mitigation: An index decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 187-194.
    4. Liu, Qilu & Cheng, Kaiming & Zhuang, Yanjie, 2022. "Estimation of city energy consumption in China based on downscaling energy balance tables," Energy, Elsevier, vol. 256(C).
    5. Milin Lu & Zhaohua Wang, 2017. "Rebound effects for residential electricity use in urban China: an aggregation analysis based E-I-O and scenario simulation," Annals of Operations Research, Springer, vol. 255(1), pages 525-546, August.

  19. Zhi-Shuang Zhu & Hua Liao & Huai-Shu Cao & Lu Wang & Yi-Ming Wei & Jinyue Yan, 2012. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," CEEP-BIT Working Papers 38, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Li, Wei & Younger, Paul L. & Cheng, Yuanping & Zhang, Baoyong & Zhou, Hongxing & Liu, Qingquan & Dai, Tao & Kong, Shengli & Jin, Kan & Yang, Quanlin, 2015. "Addressing the CO2 emissions of the world's largest coal producer and consumer: Lessons from the Haishiwan Coalfield, China," Energy, Elsevier, vol. 80(C), pages 400-413.
    2. Yuan, Xinmei & Li, Lili & Gou, Huadong & Dong, Tingting, 2015. "Energy and environmental impact of battery electric vehicle range in China," Applied Energy, Elsevier, vol. 157(C), pages 75-84.
    3. Nian, Victor, 2015. "Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example," Applied Energy, Elsevier, vol. 143(C), pages 437-450.
    4. Chen, Jiandong & Cheng, Shulei & Song, Malin & Wu, Yinyin, 2016. "A carbon emissions reduction index: Integrating the volume and allocation of regional emissions," Applied Energy, Elsevier, vol. 184(C), pages 1154-1164.
    5. Wang, Zhenshuang & Xie, Wanchen & Zhang, Chengyi, 2023. "Towards COP26 targets: Characteristics and influencing factors of spatial correlation network structure on U.S. carbon emission," Resources Policy, Elsevier, vol. 81(C).
    6. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    7. Tan, Xiujie & Choi, Yongrok & Wang, Banban & Huang, Xiaoqi, 2020. "Does China's carbon regulatory policy improve total factor carbon efficiency? A fixed-effect panel stochastic frontier analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    8. Guangfang Luo & Jianjun Zhang & Yongheng Rao & Xiaolei Zhu & Yiqiang Guo, 2017. "Coal Supply Chains: A Whole-Process-Based Measurement of Carbon Emissions in a Mining City of China," Energies, MDPI, vol. 10(11), pages 1-18, November.
    9. Yan, Wan-Lin & Cheung, Adrian (Wai Kong), 2023. "The dynamic spillover effects of climate policy uncertainty and coal price on carbon price: Evidence from China," Finance Research Letters, Elsevier, vol. 53(C).
    10. Hasdi Aimon & Anggi Putri Kurniadi & Sri Ulfa Sentosa & Nurhayati Abd Rahman, 2023. "Production, Consumption, Export and Carbon Emission for Coal Commodities: Cases of Indonesia and Australia," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 484-492, September.
    11. Bin Ye & Jingjing Jiang & Lixin Miao & Peng Yang & Ji Li & Bo Shen, 2015. "Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model," Energies, MDPI, vol. 8(11), pages 1-19, November.
    12. Lili Sun & Huijuan Cui & Quansheng Ge & Caspar Daniel Adenutsi & Xining Hao, 2020. "Spatial Pattern of a Comprehensive f E Index for Provincial Carbon Emissions in China," Energies, MDPI, vol. 13(10), pages 1-18, May.
    13. Gilbert, Alexander Q. & Sovacool, Benjamin K., 2017. "US liquefied natural gas (LNG) exports: Boom or bust for the global climate?," Energy, Elsevier, vol. 141(C), pages 1671-1680.
    14. Foumani, Mehdi & Smith-Miles, Kate, 2019. "The impact of various carbon reduction policies on green flowshop scheduling," Applied Energy, Elsevier, vol. 249(C), pages 300-315.
    15. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    16. Shangli Zhou & Hengjing He & Leping Zhang & Wei Zhao & Fei Wang, 2023. "A Data-Driven Method to Monitor Carbon Dioxide Emissions of Coal-Fired Power Plants," Energies, MDPI, vol. 16(4), pages 1-27, February.
    17. Wang, Juan & Hu, Mingming & Tukker, Arnold & Rodrigues, João F.D., 2019. "The impact of regional convergence in energy-intensive industries on China's CO2 emissions and emission goals," Energy Economics, Elsevier, vol. 80(C), pages 512-523.
    18. Robert Baťa & Jan Fuka & Petra Lešáková & Jana Heckenbergerová, 2019. "CO 2 Efficiency Break Points for Processes Associated to Wood and Coal Transport and Heating," Energies, MDPI, vol. 12(20), pages 1-21, October.
    19. Chen, Heng & Wu, Yunyun & Qi, Zhen & Chen, Qiao & Xu, Gang & Yang, Yongping & Liu, Wenyi, 2019. "Improved combustion air preheating design using multiple heat sources incorporating bypass flue in large-scale coal-fired power unit," Energy, Elsevier, vol. 169(C), pages 527-541.
    20. Gong, Chengzhu & Tang, Kai & Zhu, Kejun & Hailu, Atakelty, 2016. "An optimal time-of-use pricing for urban gas: A study with a multi-agent evolutionary game-theoretic perspective," Applied Energy, Elsevier, vol. 163(C), pages 283-294.
    21. Baidya, Durjoy & de Brito, Marco Antonio Rodrigues & Ghoreishi-Madiseh, Seyed Ali, 2020. "Techno-economic feasibility investigation of incorporating an energy storage with an exhaust heat recovery system for underground mines in cold climatic regions," Applied Energy, Elsevier, vol. 273(C).
    22. Chen-Yang Cheng & Shih-Wei Lin & Pourya Pourhejazy & Kuo-Ching Ying & Yu-Zhe Lin, 2021. "No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    23. Chang, Yuan & Huang, Runze & Ries, Robert J. & Masanet, Eric, 2015. "Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China," Energy, Elsevier, vol. 86(C), pages 335-343.
    24. Zhang, Xiaoshun & Chen, Yixuan & Yu, Tao & Yang, Bo & Qu, Kaiping & Mao, Senmao, 2017. "Equilibrium-inspired multiagent optimizer with extreme transfer learning for decentralized optimal carbon-energy combined-flow of large-scale power systems," Applied Energy, Elsevier, vol. 189(C), pages 157-176.
    25. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    26. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    27. Zhu, Zhishuang & Liao, Hua & Liu, Li, 2021. "The role of public energy R&D in energy conservation and transition: Experiences from IEA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    28. Wang, Jialin & Kuang, Min & Zhao, Xiaojuan & Wu, Haiqian & Ti, Shuguang & Chen, Chuyang & Jiao, Long, 2020. "Trends of the low-NOx and high-burnout combustion characteristics in a cascade-arch, W-shaped flame furnace regarding with the staged-air angle," Energy, Elsevier, vol. 212(C).
    29. Zhang, Yueling & Li, Junjie & Yang, Xiaoxiao, 2021. "Comprehensive competitiveness assessment of four coal-to-liquid routes and conventional oil refining route in China," Energy, Elsevier, vol. 235(C).
    30. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    31. Yu, Shiwei & Zhang, Junjie & Zheng, Shuhong & Sun, Han, 2015. "Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method," Energy Policy, Elsevier, vol. 77(C), pages 46-55.
    32. Jiandong Chen & Ming Gao & Ke Ma & Malin Song, 2020. "Different effects of technological progress on China's carbon emissions based on sustainable development," Business Strategy and the Environment, Wiley Blackwell, vol. 29(2), pages 481-492, February.
    33. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    34. Shu-Hong Wang & Ma-Lin Song & Tao Yu, 2019. "Hidden Carbon Emissions, Industrial Clusters, and Structure Optimization in China," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1319-1342, December.
    35. Yu, Shiwei & Gao, Siwei & sun, Han, 2016. "A dynamic programming model for environmental investment decision-making in coal mining," Applied Energy, Elsevier, vol. 166(C), pages 273-281.
    36. Yin, Jiuli & Zhu, Yan & Fan, Xinghua, 2021. "Correlation analysis of China’s carbon market and coal market based on multi-scale entropy," Resources Policy, Elsevier, vol. 72(C).
    37. Weijun Wang & Dan Zhao & Zengqiang Mi & Liguo Fan, 2019. "Prediction and Analysis of the Relationship between Energy Mix Structure and Electric Vehicles Holdings Based on Carbon Emission Reduction Constraint: A Case in the Beijing-Tianjin-Hebei Region, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    38. Xiaodan Gao & Yinhui Wang, 2023. "From Investment to the Environment: Exploring the Relationship between the Coordinated Development of Two-Way FDI and Carbon Productivity under Fiscal Decentralization," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    39. Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2015. "A comparative study on prediction methods for China's medium- and long-term coal demand," Energy, Elsevier, vol. 93(P2), pages 1671-1683.
    40. Wang, Ke & Zhang, Jianjun & Cai, Bofeng & Yu, Shengmin, 2019. "Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty," Applied Energy, Elsevier, vol. 250(C), pages 273-282.
    41. Li, Junjie & Cheng, Wanjing, 2020. "Comparison of life-cycle energy consumption, carbon emissions and economic costs of coal to ethanol and bioethanol," Applied Energy, Elsevier, vol. 277(C).
    42. Fang, Yujuan & Chen, Laijun & Mei, Shengwei & Wei, Wei & Huang, Shaowei & Liu, Feng, 2019. "Coal or electricity? An evolutionary game approach to investigate fuel choices of urban heat supply systems," Energy, Elsevier, vol. 181(C), pages 107-122.
    43. Yiyong Cai & Yingying Lu & Alison Stegman & David Newth, 2017. "Simulating emissions intensity targets with energy economic models: algorithm and application," Annals of Operations Research, Springer, vol. 255(1), pages 141-155, August.
    44. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
    45. Shaikh, Mohammad A. & Kucukvar, Murat & Onat, Nuri Cihat & Kirkil, Gokhan, 2017. "A framework for water and carbon footprint analysis of national electricity production scenarios," Energy, Elsevier, vol. 139(C), pages 406-421.
    46. Xiao Liu & Yancai Zhang & Yingying Li, 2022. "How Does Energy Consumption and Economic Development Affect Carbon Emissions? A Multi-Process Decomposition Framework," Energies, MDPI, vol. 15(23), pages 1-16, November.
    47. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
    48. Ning Wang & Zongguo Wen & Tao Zhu, 2015. "An estimation of regional emission intensity of coal mine methane based on coefficient‐intensity factor methodology using China as a case study," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 437-448, August.
    49. Jun Yang & Xin Feng & Yufei Tang & Jun Yan & Haibo He & Chao Luo, 2015. "A Power System Optimal Dispatch Strategy Considering the Flow of Carbon Emissions and Large Consumers," Energies, MDPI, vol. 8(9), pages 1-20, August.
    50. Lijing Zhang & Shuke Fu & Jiali Tian & Jiachao Peng, 2022. "A Review of Energy Industry Chain and Energy Supply Chain," Energies, MDPI, vol. 15(23), pages 1-21, December.
    51. Yu Sang Chang & Dosoung Choi & Hann Earl Kim, 2017. "Dynamic Trends of Carbon Intensities among 127 Countries," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    52. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    53. Huang, Junbing & Liu, Qiang & Cai, Xiaochen & Hao, Yu & Lei, Hongyan, 2018. "The effect of technological factors on China's carbon intensity: New evidence from a panel threshold model," Energy Policy, Elsevier, vol. 115(C), pages 32-42.
    54. Xiangsheng Dou, 2017. "Low Carbon Technology Innovation, Carbon Emissions Trading and Relevant Policy Support for China s Low Carbon Economy Development," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 172-184.
    55. Chen, Heng & Qi, Zhen & Dai, Lihao & Li, Bin & Xu, Gang & Yang, Yongping, 2020. "Performance evaluation of a new conceptual combustion air preheating system in a 1000 MW coal-fueled power plant," Energy, Elsevier, vol. 193(C).
    56. Yu, Shiwei & Zheng, Shuhong & Gao, Shiwei & Yang, Juan, 2017. "A multi-objective decision model for investment in energy savings and emission reductions in coal mining," European Journal of Operational Research, Elsevier, vol. 260(1), pages 335-347.
    57. Zhang, Yaru & Ma, Tieju & Guo, Fei, 2018. "A multi-regional energy transport and structure model for China’s electricity system," Energy, Elsevier, vol. 161(C), pages 907-919.
    58. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    59. Yang, Ranran & Long, Ruyin & Yue, Ting & Shi, Haihong, 2014. "Calculation of embodied energy in Sino-USA trade: 1997–2011," Energy Policy, Elsevier, vol. 72(C), pages 110-119.
    60. Yang, Shubo & Jahanger, Atif & Hossain, Mohammad Razib, 2023. "Does China's low-carbon city pilot intervention limit electricity consumption? An analysis of industrial energy efficiency using time-varying DID model," Energy Economics, Elsevier, vol. 121(C).
    61. Li, Lanlan & Gong, Chengzhu & Tian, Shizhong & Jiao, Jianling, 2016. "The peak-shaving efficiency analysis of natural gas time-of-use pricing for residential consumers: Evidence from multi-agent simulation," Energy, Elsevier, vol. 96(C), pages 48-58.
    62. Petar Mitić & Olja Munitlak Ivanović & Aleksandar Zdravković, 2017. "A Cointegration Analysis of Real GDP and CO 2 Emissions in Transitional Countries," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    63. Minyoung Yang & Jinsoo Kim, 2022. "A Critical Review of the Definition and Estimation of Carbon Efficiency," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    64. Gong, Chengzhu & Yu, Shiwei & Zhu, Kejun & Hailu, Atakelty, 2016. "Evaluating the influence of increasing block tariffs in residential gas sector using agent-based computational economics," Energy Policy, Elsevier, vol. 92(C), pages 334-347.
    65. Hanak, Dawid P. & Kolios, Athanasios J. & Manovic, Vasilije, 2016. "Comparison of probabilistic performance of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant," Applied Energy, Elsevier, vol. 172(C), pages 323-336.
    66. Ye, Bin & Jiang, JingJing & Li, Changsheng & Miao, Lixin & Tang, Jie, 2017. "Quantification and driving force analysis of provincial-level carbon emissions in China," Applied Energy, Elsevier, vol. 198(C), pages 223-238.
    67. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    68. Yu, Shiwei & Zhou, Shuangshuang & Zheng, Shuhong & Li, Zhenxi & Liu, Lancui, 2019. "Developing an optimal renewable electricity generation mix for China using a fuzzy multi-objective approach," Renewable Energy, Elsevier, vol. 139(C), pages 1086-1098.
    69. Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.
    70. Mingxing Wu & Zhilin Lu & Qing Chen & Tao Zhu & En Lu & Wentian Lu & Mingbo Liu, 2020. "A Two-Stage Algorithm of Locational Marginal Price Calculation Subject to Carbon Emission Allowance," Energies, MDPI, vol. 13(10), pages 1-20, May.
    71. Cho-Hoi Hui & Andrew Wong, 2021. "Do countries adjust the carbon intensity of energy towards targets? The role of financial development on the adjustment," SN Business & Economics, Springer, vol. 1(10), pages 1-30, October.
    72. Li, Chong-Mao & Cui, Tao & Nie, Rui & Lin, Han & Shan, Yuli, 2019. "Does diversification help improve the performance of coal companies? Evidence from China's listed coal companies," Resources Policy, Elsevier, vol. 61(C), pages 88-98.
    73. Ke Wang & Yi-Ming Wei, 2014. "China's regional industrial energy efficiency and carbon emissions abatement costs," CEEP-BIT Working Papers 64, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    74. Hanak, D.P. & Kolios, A.J. & Biliyok, C. & Manovic, V., 2015. "Probabilistic performance assessment of a coal-fired power plant," Applied Energy, Elsevier, vol. 139(C), pages 350-364.
    75. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    76. Man, Yi & Yang, Siyu & Zhang, Jun & Qian, Yu, 2014. "Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission," Applied Energy, Elsevier, vol. 133(C), pages 197-205.
    77. Meng, Xin & Yu, Yanni, 2023. "Can renewable energy portfolio standards and carbon tax policies promote carbon emission reduction in China's power industry?," Energy Policy, Elsevier, vol. 174(C).
    78. Zhao, Jingyu & Zhang, Yongli & Song, Jiajia & Guo, Tao & Deng, Jun & Shu, Chi-Min, 2023. "Oxygen distribution and gaseous products change of coal fire based upon the semi-enclosed experimental system," Energy, Elsevier, vol. 263(PB).
    79. Qianyu Zhao & Boyu Xie & Mengyao Han, 2023. "Unpacking the Sub-Regional Spatial Network of Land-Use Carbon Emissions: The Case of Sichuan Province in China," Land, MDPI, vol. 12(10), pages 1-22, October.
    80. Wai-Ming To & Peter Ka Chun Lee & Tsz-Ming Lai, 2017. "Modeling of Monthly Residential and Commercial Electricity Consumption Using Nonlinear Seasonal Models—The Case of Hong Kong," Energies, MDPI, vol. 10(7), pages 1-16, June.
    81. Yu Hao & Shang Gao & Yunxia Guo & Zhiqiang Gai & Haitao Wu, 2021. "Measuring the nexus between economic development and environmental quality based on environmental Kuznets curve: a comparative study between China and Germany for the period of 2000–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16848-16873, November.
    82. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    83. Jie Wu & Jun-Fei Chu & Liang Liang, 2016. "Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 279-296, November.
    84. Shichun Xu & Chang Gao & Yunfan Li & Xiaoxue Ma & Yifeng Zhou & Zhengxia He & Bin Zhao & Shuxiao Wang, 2019. "What Influences the Cross-Border Air Pollutant Transfer in China–United States Trade: A Comparative Analysis Using the Extended IO-SDA Method," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    85. Chen, Jiandong & Gao, Ming & Mangla, Sachin Kumar & Song, Malin & Wen, Jie, 2020. "Effects of technological changes on China's carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    86. Zheng, Huan-yu & Wang, Ling, 2015. "Reduction of carbon emissions and project makespan by a Pareto-based estimation of distribution algorithm," International Journal of Production Economics, Elsevier, vol. 164(C), pages 421-432.
    87. Wang, Qunwei & Su, Bin & Zhou, Peng & Chiu, Ching-Ren, 2016. "Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: A modified approach," Energy Economics, Elsevier, vol. 56(C), pages 475-482.
    88. Qiang Du & Min Wu & Yadan Xu & Xinran Lu & Libiao Bai & Ming Yu, 2018. "Club convergence and spatial distribution dynamics of carbon intensity in China’s construction industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 519-536, November.
    89. Thomakos, Dimitrios D. & Alexopoulos, Thomas A., 2016. "Carbon intensity as a proxy for environmental performance and the informational content of the EPI," Energy Policy, Elsevier, vol. 94(C), pages 179-190.
    90. Honglei Shi & Guiling Wang & Wei Zhang & Feng Ma & Wenjing Lin & Menglei Ji, 2023. "Predicting the Potential of China’s Geothermal Energy in Industrial Development and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
    91. Guo, Feihong & Chen, Jun & He, Yi & Gardy, Jabbar & Sun, Yahui & Jiang, Jingyu & Jiang, Xiaoxiang, 2022. "Upgrading agro-pellets by torrefaction and co-pelletization process using food waste as a pellet binder," Renewable Energy, Elsevier, vol. 191(C), pages 213-224.

  20. Hua Liao & Ce Wang & Zhi-Shuang Zhu & Xiao-Wei Ma, 2012. "Structural decomposition analysis on energy intensity changes at regional level," CEEP-BIT Working Papers 40, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    2. Wang, Wenwen & Liu, Xiao & Zhang, Ming & Song, Xuefeng, 2014. "Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China's energy consumption," Energy, Elsevier, vol. 67(C), pages 617-622.
    3. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    4. Hua Liao & Zhao-Yi & Ce Wang, 2013. "Divisia decomposition method and its application to changes of net oil import intensity," CEEP-BIT Working Papers 55, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    5. Ming Zhang & Yan Song & Lixia Yao, 2015. "Exploring commercial sector building energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2673-2682, February.
    6. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    7. Ce Wang & Hua Liao & Su-Yan Pan & Lu-Tao Zhao & Yi-Ming Wei, 2014. "The fluctuations of China's energy intensity: Biased technical change," CEEP-BIT Working Papers 56, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

  21. Hua Liao & Jian Du & Yi-Ming Wei, 2012. "Energy conservation in China: Key provincial sectors at two-digit level," CEEP-BIT Working Papers 53, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Yang, Yuan & Cai, Wenjia & Wang, Can, 2014. "Industrial CO2 intensity, indigenous innovation and R&D spillovers in China’s provinces," Applied Energy, Elsevier, vol. 131(C), pages 117-127.
    2. Chen, Yaping & Guo, Zhanwei & Wu, Jiafeng & Zhang, Zhi & Hua, Junye, 2015. "Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle," Energy, Elsevier, vol. 90(P2), pages 2028-2037.
    3. Maria J. Herrerias & Roselyne Joyeux & Eric Girardin, 2013. "Short- and long-run causality between energy consumption and economic growth : evidence across regions in China," Post-Print hal-01499624, HAL.
    4. Jingjing Qu & Aijun Li & Morié Guy-Roland N’Drin, 2023. "Measuring technology inequality across African countries using the concept of efficiency Gini coefficient," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4107-4138, May.
    5. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    6. Li, Zheng & Pan, Lingying & Fu, Feng & Liu, Pei & Ma, Linwei & Amorelli, Angelo, 2014. "China's regional disparities in energy consumption: An input–output analysis," Energy, Elsevier, vol. 78(C), pages 426-438.
    7. Milin Lu & Zhaohua Wang, 2017. "Rebound effects for residential electricity use in urban China: an aggregation analysis based E-I-O and scenario simulation," Annals of Operations Research, Springer, vol. 255(1), pages 525-546, August.

  22. Hua Liao & Huaishu Cao, 2012. "How does carbon dioxide emission change with the economic development? Statistical experiences from 132 countries," CEEP-BIT Working Papers 54, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Liddle, Brantley & Messinis, George, 2014. "Revisiting carbon Kuznets curves with endogenous breaks modeling: Evidence of decoupling and saturation (but few inverted-Us) for individual OECD countries," MPRA Paper 59566, University Library of Munich, Germany.
    2. Giedrė Lapinskienė & Kęstutis Peleckis & Neringa Slavinskaitė, 2017. "Energy consumption, economic growth and greenhouse gas emissions in the European Union countries," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(6), pages 1082-1097, November.
    3. Jiansheng Qu & Tek Maraseni & Lina Liu & Zhiqiang Zhang & Talal Yusaf, 2015. "A Comparison of Household Carbon Emission Patterns of Urban and Rural China over the 17 Year Period (1995–2011)," Energies, MDPI, vol. 8(9), pages 1-21, September.
    4. Giedrė Lapinskienė & Kęstutis Peleckis & Marijus Radavičius, 2015. "Economic development and greenhouse gas emissions in the European Union countries," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 16(6), pages 1109-1123, December.
    5. Fei Wang & Changjian Wang & Jing Chen & Zeng Li & Ling Li, 2020. "Examining the determinants of energy-related carbon emissions in Central Asia: country-level LMDI and EKC analysis during different phases," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7743-7769, December.
    6. Sugiawan, Yogi & Islam, Moinul & Managi, Shunsuke, 2017. "Global Marine Fisheries with Economic Growth," MPRA Paper 80841, University Library of Munich, Germany.

  23. Jing-Li Fan & Hua Liao & Qiao-Mei Liang & Hirokazu Tatano & Chun-Feng Liu & Yi-Ming Wei, 2011. "Residential carbon emission evolutions in urban-rural divided China: An end-use and behavior analysis," CEEP-BIT Working Papers 16, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Zhao, Jincai & Ji, Guangxing & Yue, YanLin & Lai, Zhizhu & Chen, Yulong & Yang, Dongyang & Yang, Xu & Wang, Zheng, 2019. "Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets," Applied Energy, Elsevier, vol. 235(C), pages 612-624.
    2. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    3. Jie-fang Dong & Qiang Wang & Chun Deng & Xing-min Wang & Xiao-lei Zhang, 2016. "How to Move China toward a Green-Energy Economy: From a Sector Perspective," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
    4. Xiang, Xiwang & Ma, Minda & Ma, Xin & Chen, Liming & Cai, Weiguang & Feng, Wei & Ma, Zhili, 2022. "Historical decarbonization of global commercial building operations in the 21st century," Applied Energy, Elsevier, vol. 322(C).
    5. Chen, Zhan-Ming, 2014. "Inflationary effect of coal price change on the Chinese economy," Applied Energy, Elsevier, vol. 114(C), pages 301-309.
    6. Zhang, Yixiang & Li, Juan & Tao, Wenwen, 2021. "Does energy efficiency affect appliance prices? Empirical analysis of air conditioners in China based on propensity score matching," Energy Economics, Elsevier, vol. 101(C).
    7. Linghui Zhang & Xin Ma & Shushen Zhang, 2020. "District Heating Energy Consumption of the Building Sector in the Jing-Jin-Ji urban Agglomeration: Decomposition and Decoupling Analysis," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    8. Qian Wang & Qiao-Mei Liang & Bing Wang & Fang-Xun Zhong, 2016. "Impact of household expenditures on CO2 emissions in China: Income-determined or lifestyle-driven?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 353-379, November.
    9. Zhang, Junjie & Yu, Biying & Wei, Yi-Ming, 2018. "Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces," Applied Energy, Elsevier, vol. 229(C), pages 236-252.
    10. Qi, Wei & Li, Guangdong, 2020. "Residential carbon emission embedded in China's inter-provincial population migration," Energy Policy, Elsevier, vol. 136(C).
    11. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
    12. Qingwei Shi & Jingxin Gao & Xia Wang & Hong Ren & Weiguang Cai & Haifeng Wei, 2020. "Temporal and Spatial Variability of Carbon Emission Intensity of Urban Residential Buildings: Testing the Effect of Economics and Geographic Location in China," Sustainability, MDPI, vol. 12(7), pages 1-23, March.
    13. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    14. Yong Yang & Junsong Jia & Chundi Chen, 2020. "Residential Energy-Related CO 2 Emissions in China’s Less Developed Regions: A Case Study of Jiangxi," Sustainability, MDPI, vol. 12(5), pages 1-28, March.
    15. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
    16. Lina Liu & Jiansheng Qu & Tek Narayan Maraseni & Yibo Niu & Jingjing Zeng & Lihua Zhang & Li Xu, 2020. "Household CO 2 Emissions: Current Status and Future Perspectives," IJERPH, MDPI, vol. 17(19), pages 1-19, September.
    17. Jing-Li Fan & Hua Liao & Bao-Jun Tang & Su-Yan Pan & Hao Yu & Yi-Ming Wei, 2016. "The impacts of migrant workers consumption on energy use and CO 2 emissions in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 725-743, March.
    18. Fan, Jing-Li & Hou, Yun-Bing & Wang, Qian & Wang, Ce & Wei, Yi-Ming, 2016. "Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison," Applied Energy, Elsevier, vol. 184(C), pages 790-799.
    19. Hongwei Xiao & Zhongyu Ma & Peng Zhang & Ming Liu, 2019. "Study of the impact of energy consumption structure on carbon emission intensity in China from the perspective of spatial effects," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1365-1380, December.
    20. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2017. "Decomposing inequality in energy-related CO2 emissions by source and source increment: The roles of production and residential consumption," Energy Policy, Elsevier, vol. 107(C), pages 698-710.
    21. Hua Liao & Celio Andrade & Julio Lumbreras & Jing Tian, 2018. "CO2 Emissions in Beijing: Sectoral Linkages and Demand Drivers," CEEP-BIT Working Papers 113, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    22. Wang, Bing & Wang, Qian & Wei, Yi-Ming & Li, Zhi-Ping, 2018. "Role of renewable energy in China’s energy security and climate change mitigation: An index decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 187-194.
    23. Fan, Jianshuang & Zhou, Lin & Zhang, Yan & Shao, Shuai & Ma, Miao, 2021. "How does population aging affect household carbon emissions? Evidence from Chinese urban and rural areas," Energy Economics, Elsevier, vol. 100(C).
    24. Ding, Qun & Cai, Wenjia & Wang, Can & Sanwal, Mukul, 2017. "The relationships between household consumption activities and energy consumption in china— An input-output analysis from the lifestyle perspective," Applied Energy, Elsevier, vol. 207(C), pages 520-532.
    25. Haiyan Zhang & Michael L. Lahr, 2018. "Households’ Energy Consumption Change in China: A Multi-Regional Perspective," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    26. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    27. Guozhong Zheng & Wentao Bu, 2018. "Review of Heating Methods for Rural Houses in China," Energies, MDPI, vol. 11(12), pages 1-18, December.
    28. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    29. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    30. Yuling Sun & Junsong Jia & Min Ju & Chundi Chen, 2022. "Spatiotemporal Dynamics of Direct Carbon Emission and Policy Implication of Energy Transition for China’s Residential Consumption Sector by the Methods of Social Network Analysis and Geographically We," Land, MDPI, vol. 11(7), pages 1-26, July.
    31. Hu, Zongyi & Tang, Liwei, 2013. "Exploring the relation between urbanization and residential CO2 emissions in China: a PTR approach," MPRA Paper 55379, University Library of Munich, Germany.
    32. Wenwen Wang & Ming Zhang, 2015. "Direct and indirect energy consumption of rural households in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1693-1705, December.
    33. Ce Wang & Hua Liao & Su-Yan Pan & Lu-Tao Zhao & Yi-Ming Wei, 2014. "The fluctuations of China's energy intensity: Biased technical change," CEEP-BIT Working Papers 56, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    34. Zhen, Wei & Zhong, Zhangqi & Wang, Yichen & Miao, Lu & Qin, Quande & Wei, Yi-Ming, 2019. "Evolution of urban household indirect carbon emission responsibility from an inter-sectoral perspective: A case study of Guangdong, China," Energy Economics, Elsevier, vol. 83(C), pages 197-207.
    35. Du, Mengbing & Zhang, Xiaoling & Xia, Lang & Cao, Libin & Zhang, Zhe & Zhang, Li & Zheng, Heran & Cai, Bofeng, 2022. "The China Carbon Watch (CCW) system: A rapid accounting of household carbon emissions in China at the provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    36. Nie, Hongguang & Kemp, René, 2014. "Index decomposition analysis of residential energy consumption in China: 2002–2010," Applied Energy, Elsevier, vol. 121(C), pages 10-19.
    37. Liu, Lan-Cui & Wu, Gang, 2013. "Relating five bounded environmental problems to China's household consumption in 2011–2015," Energy, Elsevier, vol. 57(C), pages 427-433.
    38. Chen, Lei & Xu, Linyu & Velasco-Fernández, Raúl & Giampietro, Mario & Yang, Zhifeng, 2021. "Residential energy metabolic patterns in China: A study of the urbanization process," Energy, Elsevier, vol. 215(PA).
    39. Fan, Jing-Li & Da, Ya-Bin & Wan, Si-Lai & Zhang, Mian & Cao, Zhe & Wang, Yu & Zhang, Xian, 2019. "Determinants of carbon emissions in ‘Belt and Road initiative’ countries: A production technology perspective," Applied Energy, Elsevier, vol. 239(C), pages 268-279.
    40. Xibao Xu & Yan Tan & Shuang Chen & Guishan Yang & Weizhong Su, 2015. "Urban Household Carbon Emission and Contributing Factors in the Yangtze River Delta, China," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-21, April.
    41. Yulin Liu & Min Zhang & Rujia Liu, 2020. "The Impact of Income Inequality on Carbon Emissions in China: A Household-Level Analysis," Sustainability, MDPI, vol. 12(7), pages 1-22, March.
    42. Xu, X.Y. & Ang, B.W., 2014. "Analysing residential energy consumption using index decomposition analysis," Applied Energy, Elsevier, vol. 113(C), pages 342-351.
    43. Sirous Ghanbari & Mohammad Reza Mansouri Daneshvar, 2021. "Urban and rural contribution to the GHG emissions in the MECA countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6418-6452, April.
    44. Chen, Yilin & Shen, Huizhong & Zhong, Qirui & Chen, Han & Huang, Tianbo & Liu, Junfeng & Cheng, Hefa & Zeng, Eddy Y. & Smith, Kirk R. & Tao, Shu, 2016. "Transition of household cookfuels in China from 2010 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 800-809.
    45. He, Qi & Jiang, Xujia & Gouldson, Andy & Sudmant, Andrew & Guan, Dabo & Colenbrander, Sarah & Xue, Tao & Zheng, Bo & Zhang, Qiang, 2016. "Climate change mitigation in Chinese megacities: A measures-based analysis of opportunities in the residential sector," Applied Energy, Elsevier, vol. 184(C), pages 769-778.
    46. Zheng Wang & Shaojian Wang & Chuanhao Lu & Lei Hu, 2022. "Which Factors Influence the Regional Difference of Urban–Rural Residential CO 2 Emissions? A Case Study by Cross-Regional Panel Analysis in China," Land, MDPI, vol. 11(5), pages 1-19, April.
    47. Liya Yang & Honghui Zhang & Xinqi Liao & Haiqi Wang & Yong Bian & Geng Liu & Weiling Luo, 2023. "The Relationship between Spatial Characteristics of Urban-Rural Settlements and Carbon Emissions in Guangdong Province," IJERPH, MDPI, vol. 20(3), pages 1-22, February.
    48. Chen Xu & Yu Li & Xueting Jin & Liang Yuan & Hao Cheng, 2017. "A Real-Time Energy Consumption Simulation and Comparison of Buildings in Different Construction Years in the Olympic Central Area in Beijing," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    49. Jingjing Chen & Yangyang Lin & Xiaojun Wang & Bingjing Mao & Lihong Peng, 2022. "Direct and Indirect Carbon Emission from Household Consumption Based on LMDI and SDA Model: A Decomposition and Comparison Analysis," Energies, MDPI, vol. 15(14), pages 1-22, July.
    50. Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.
    51. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    52. Zhou, Qiang & Liu, Yong & Qu, Shen, 2022. "Emission effects of China's rural revitalization: The nexus of infrastructure investment, household income, and direct residential CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    53. Pedro J. Zarco-Periñán & Fco Javier Zarco-Soto & Irene M. Zarco-Soto & José L. Martínez-Ramos & Rafael Sánchez-Durán, 2022. "CO 2 Emissions in Buildings: A Synopsis of Current Studies," Energies, MDPI, vol. 15(18), pages 1-10, September.
    54. Lina Liu & Jiansheng Qu & Afton Clarke-Sather & Tek Narayan Maraseni & Jiaxing Pang, 2017. "Spatial Variations and Determinants of Per Capita Household CO 2 Emissions (PHCEs) in China," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    55. Libiao Bai & Hailing Wang & Chunming Shi & Qiang Du & Yi Li, 2017. "Assessment of SIP Buildings for Sustainable Development in Rural China Using AHP-Grey Correlation Analysis," IJERPH, MDPI, vol. 14(11), pages 1-12, October.
    56. Yan, Ran & Ma, Minda & Zhou, Nan & Feng, Wei & Xiang, Xiwang & Mao, Chao, 2023. "Towards COP27: Decarbonization patterns of residential building in China and India," Applied Energy, Elsevier, vol. 352(C).

  24. Hua Liao & Yi-Ming Wei, 2009. "China's energy consumption: A perspective from Divisia aggregation approach," CEEP-BIT Working Papers 1, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    Cited by:

    1. Du, Kerui & Lin, Boqiang, 2015. "Understanding the rapid growth of China's energy consumption: A comprehensive decomposition framework," Energy, Elsevier, vol. 90(P1), pages 570-577.
    2. Chen, Zhan-Ming, 2014. "Inflationary effect of coal price change on the Chinese economy," Applied Energy, Elsevier, vol. 114(C), pages 301-309.
    3. Liao, Hua & Wei, Yi-Ming, 2012. "Will the aggregation approach affect energy efficiency performance assessment?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4537-4542.
    4. Ma, Linwei & Liu, Pei & Fu, Feng & Li, Zheng & Ni, Weidou, 2011. "Integrated energy strategy for the sustainable development of China," Energy, Elsevier, vol. 36(2), pages 1143-1154.
    5. Ito, Toshihide & Chen, Youqing & Ito, Shoichi & Yamaguchi, Kaoru, 2010. "Prospect of the upper limit of the energy demand in China from regional aspects," Energy, Elsevier, vol. 35(12), pages 5320-5327.
    6. Zhang, Ming & Guo, Fangyan, 2013. "Analysis of rural residential commercial energy consumption in China," Energy, Elsevier, vol. 52(C), pages 222-229.
    7. Işıl Şirin SELÇUK, 2018. "Türkiye Sanayi Sektörü Enerji Verimliliği: Genişletilmiş Logaritmik Ortalama Divisia Endeks Ayrıştırma Yöntemi Uygulaması," Sosyoekonomi Journal, Sosyoekonomi Society, issue 26(37).
    8. Chao Xu & Yunpeng Wang & Lili Li & Peng Wang, 2018. "Spatiotemporal Trajectory of China’s Provincial Energy Efficiency and Implications on the Route of Economic Transformation," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    9. Qiang Wang & Rongrong Li & Rui Jiang, 2016. "Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
    10. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    11. Lin, Boqiang & Wang, Ailun, 2015. "Estimating energy conservation potential in China's commercial sector," Energy, Elsevier, vol. 82(C), pages 147-156.
    12. Lin, Boqiang & Xie, Chunping, 2013. "Estimation on oil demand and oil saving potential of China's road transport sector," Energy Policy, Elsevier, vol. 61(C), pages 472-482.
    13. Xia, X.H. & Huang, G.T. & Chen, G.Q. & Zhang, Bo & Chen, Z.M. & Yang, Q., 2011. "Energy security, efficiency and carbon emission of Chinese industry," Energy Policy, Elsevier, vol. 39(6), pages 3520-3528, June.
    14. Zhang, Jing & Deng, Shihuai & Shen, Fei & Yang, Xinyao & Liu, Guodong & Guo, Hang & Li, Yuanwei & Hong, Xiao & Zhang, Yanzong & Peng, Hong & Zhang, Xiaohong & Li, Li & Wang, Yingjun, 2011. "Modeling the relationship between energy consumption and economy development in China," Energy, Elsevier, vol. 36(7), pages 4227-4234.
    15. Li, Fangyi & Song, Zhouying & Liu, Weidong, 2014. "China's energy consumption under the global economic crisis: Decomposition and sectoral analysis," Energy Policy, Elsevier, vol. 64(C), pages 193-202.
    16. Zheng, Tengfei & Qiang, Maoshan & Chen, Wenchao & Xia, Bingqing & Wang, Jianing, 2016. "An externality evaluation model for hydropower projects: A case study of the Three Gorges Project," Energy, Elsevier, vol. 108(C), pages 74-85.
    17. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    18. Xia, X.H. & Chen, Y.B. & Li, J.S. & Tasawar, H. & Alsaedi, A. & Chen, G.Q., 2014. "Energy regulation in China: Objective selection, potential assessment and responsibility sharing by partial frontier analysis," Energy Policy, Elsevier, vol. 66(C), pages 292-302.
    19. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
    20. Liang, Sai & Zhang, Tianzhu, 2011. "Interactions of energy technology development and new energy exploitation with water technology development in China," Energy, Elsevier, vol. 36(12), pages 6960-6966.
    21. Raza Muhammad khan & Sohail Farooq & Muhammad Akram Gilal, 2020. "Electricity Consumption and Economic Growth: A Time-Series Study on Pakistan," Global Economics Review, Humanity Only, vol. 5(1), pages 24-37, March.
    22. Xu, Tang & Baosheng, Zhang & Lianyong, Feng & Masri, Marwan & Honarvar, Afshin, 2011. "Economic impacts and challenges of China’s petroleum industry: An input–output analysis," Energy, Elsevier, vol. 36(5), pages 2905-2911.
    23. Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.
    24. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.

Articles

  1. Hua Liao & Chen Zhang & Paul J. Burke & Ru Li & Yi‐Ming Wei, 2023. "Extreme temperatures, mortality, and adaptation: Evidence from the county level in China," Health Economics, John Wiley & Sons, Ltd., vol. 32(4), pages 953-969, April.

    Cited by:

    1. Molitor, David & White, Corey, 2023. "Do Cities Mitigate or Exacerbate Environmental Damages to Health?," IZA Discussion Papers 16678, Institute of Labor Economics (IZA).

  2. Zhifu Mi & Yuning Gao & Hua Liao, 2023. "Carbon neutrality and socio-economic development," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(1), pages 1-3, January.

    Cited by:

    1. Jiandong Chen & Yuqing Li & Yiyin Xu & Michael Vardanyan & Zhiyang Shen & Malin Song, 2023. "The impact of fiscal technology expenditures on innovation drive and carbon emissions in China," Post-Print hal-04274714, HAL.

  3. Ai, Xian-Neng & Du, Yun-Fei & Li, Wei-Ming & Li, Hui & Liao, Hua, 2021. "The pattern of household energy transition," Energy, Elsevier, vol. 234(C).

    Cited by:

    1. Lin, Jin & Dong, Jun & Liu, Dongran & Zhang, Yaoyu & Ma, Tongtao, 2022. "From peak shedding to low-carbon transitions: Customer psychological factors in demand response," Energy, Elsevier, vol. 238(PA).
    2. Duan, Mimi & Li, Lingyan & Liu, Xiaojun & Pei, Jiajia & Song, Huihui, 2023. "Turning awareness into behavior: Meta-analysis of household residential life energy transition behavior from the dual perspective of internal driving forces and external inducing forces," Energy, Elsevier, vol. 279(C).
    3. Li, Hui & Zhang, Ruining & Ai, Xianneng, 2022. "Cost estimation of “coal-to-gas” project: Government and residents’ perspectives," Energy Policy, Elsevier, vol. 167(C).
    4. Yeo, Lip Siang & Teng, Sin Yong & Ng, Wendy Pei Qin & Lim, Chun Hsion & Leong, Wei Dong & Lam, Hon Loong & Wong, Yat Choy & Sunarso, Jaka & How, Bing Shen, 2022. "Sequential optimization of process and supply chains considering re-refineries for oil and gas circularity," Applied Energy, Elsevier, vol. 322(C).
    5. Sun, Yinong & Frew, Bethany & Dalvi, Sourabh & Dhulipala, Surya C., 2022. "Insights into methodologies and operational details of resource adequacy assessment: A case study with application to a broader flexibility framework," Applied Energy, Elsevier, vol. 328(C).
    6. Nordgård-Hansen, Ellen & Kishor, Nand & Midttømme, Kirsti & Risinggård, Vetle Kjær & Kocbach, Jan, 2022. "Case study on optimal design and operation of detached house energy system: Solar, battery, and ground source heat pump," Applied Energy, Elsevier, vol. 308(C).
    7. Khalid Waleed & Faisal Mehmood Mirza, 2023. "Examining fuel choice patterns through household energy transition index: an alternative to traditional energy ladder and stacking models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6449-6501, July.
    8. Anil Shrestha & Makoto Kakinaka, 2022. "Remittance Inflows and Energy Transition of the Residential Sector in Developing Countries," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    9. Li, Hui & Zhao, Jun & Zhang, Ruining & Hou, Bingdong, 2022. "The natural gas consumption and mortality nexus: A mediation analysis," Energy, Elsevier, vol. 248(C).
    10. Borge-Diez, David & Icaza, Daniel & Trujillo-Cueva, Diego Francisco & Açıkkalp, Emin, 2022. "Renewable energy driven heat pumps decarbonization potential in existing residential buildings: Roadmap and case study of Spain," Energy, Elsevier, vol. 247(C).
    11. Zhu, Xiaodong & Zhu, Zheng & Zhu, Bangzhu & Wang, Ping, 2022. "The determinants of energy choice for household cooking in China," Energy, Elsevier, vol. 260(C).
    12. Hassan, Aakash & Al-Abdeli, Yasir M. & Masek, Martin & Bass, Octavian, 2022. "Optimal sizing and energy scheduling of grid-supplemented solar PV systems with battery storage: Sensitivity of reliability and financial constraints," Energy, Elsevier, vol. 238(PA).

  4. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).

    Cited by:

    1. Lin, Jin & Dong, Jun & Liu, Dongran & Zhang, Yaoyu & Ma, Tongtao, 2022. "From peak shedding to low-carbon transitions: Customer psychological factors in demand response," Energy, Elsevier, vol. 238(PA).
    2. Wei Shi & Wenwen Tang & Fuwei Qiao & Zhiquan Sha & Chengyuan Wang & Sixue Zhao, 2022. "How to Reduce Carbon Dioxide Emissions from Power Systems in Gansu Province—Analyze from the Life Cycle Perspective," Energies, MDPI, vol. 15(10), pages 1-15, May.
    3. Li, Yaya & Zhang, Yun, 2023. "What is the role of green ICT innovation in lowering carbon emissions in China? A provincial-level analysis," Energy Economics, Elsevier, vol. 127(PA).
    4. Zheng, Huanyu & Song, Malin & Shen, Zhiyang, 2021. "The evolution of renewable energy and its impact on carbon reduction in China," Energy, Elsevier, vol. 237(C).
    5. Ar'anzazu de Juan & Pilar Poncela & Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2022. "Economic activity and climate change," Papers 2206.03187, arXiv.org, revised Jun 2022.
    6. Ke Huang & Teng Wang & Jiachao Peng & Lijun Sun, 2023. "The Impact of Export Sophistication of the New Energy Industry on Carbon Emissions: An Empirical Study," Energies, MDPI, vol. 16(9), pages 1-15, April.
    7. Licong Xing & Edmund Ntom Udemba & Merve Tosun & Ibrahim Abdallah & Imed Boukhris, 2023. "Sustainable development policies of renewable energy and technological innovation toward climate and sustainable development goals," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 1178-1192, April.
    8. Bingquan Liu & Yue Wang & Xuran Chang & Boyang Nie & Lingqi Meng & Yongqing Li, 2022. "Does Land Urbanization Affect the Catch-Up Effect of Carbon Emissions Reduction in China’s Logistics?," Land, MDPI, vol. 11(9), pages 1-18, September.
    9. Sufyanullah, Khan & Ahmad, Khan Arshad & Sufyan Ali, Muhammad Abu, 2022. "Does emission of carbon dioxide is impacted by urbanization? An empirical study of urbanization, energy consumption, economic growth and carbon emissions - Using ARDL bound testing approach," Energy Policy, Elsevier, vol. 164(C).
    10. Shah, Syed Ale Raza & Zhang, Qianxiao & Abbas, Jaffar & Balsalobre-Lorente, Daniel & Pilař, Ladislav, 2023. "Technology, Urbanization and Natural Gas Supply Matter for Carbon Neutrality: A New Evidence of Environmental Sustainability under the Prism of COP26," Resources Policy, Elsevier, vol. 82(C).
    11. Shixiong Song & Siyuan Zhao & Ye Zhang & Yongxi Ma, 2023. "Carbon Emissions from Agricultural Inputs in China over the Past Three Decades," Agriculture, MDPI, vol. 13(5), pages 1-12, April.
    12. Liu, Yang & Dong, Kangyin & Jiang, Qingzhe, 2023. "Assessing energy vulnerability and its impact on carbon emissions: A global case," Energy Economics, Elsevier, vol. 119(C).
    13. Jiangsheng Deng & Rongguang Zhang & Qiwen Qiu, 2023. "Spatial Impact of Industrial Structure Upgrading and Corporate Social Responsibility on Carbon Emissions: Evidence from China," Sustainability, MDPI, vol. 15(13), pages 1-14, July.
    14. Wang, Jianda & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Decoupling and decomposition analysis of investments and CO2 emissions in information and communication technology sector," Applied Energy, Elsevier, vol. 302(C).
    15. Wang, Bin & Yu, Minxiu & Zhu, Yucheng & Bao, Pinjuan, 2021. "Unveiling the driving factors of carbon emissions from industrial resource allocation in China: A spatial econometric perspective," Energy Policy, Elsevier, vol. 158(C).
    16. Fengting Wang & Hao Wang & Cong Liu & Lichun Xiong & Zhiquan Qian, 2022. "The Effect of Green Urbanization on Forestry Green Total Factor Productivity in China: Analysis from a Carbon Neutral Perspective," Land, MDPI, vol. 11(11), pages 1-21, October.
    17. Ahakwa, Isaac & Xu, Yi & Tackie, Evelyn Agba, 2023. "Greening human capital towards environmental quality in Ghana: Insight from the novel dynamic ARDL simulation approach," Energy Policy, Elsevier, vol. 176(C).
    18. Shu, Yunxia & Deng, Nanxin & Wu, Yuming & Bao, Shuming & Bie, Ao, 2023. "Urban governance and sustainable development: The effect of smart city on carbon emission in China," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    19. Zhao Yang, 2023. "Can the Digitalization Reduce Carbon Emission Intensity?—The Moderating Effects of the Fiscal Decentralization," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    20. Wang, Qiang & Zhang, Chen & Li, Rongrong, 2022. "Towards carbon neutrality by improving carbon efficiency - A system-GMM dynamic panel analysis for 131 countries’ carbon efficiency," Energy, Elsevier, vol. 258(C).
    21. Janusz Myszczyszyn & Błażej Suproń, 2022. "Relationship among Economic Growth, Energy Consumption, CO 2 Emission, and Urbanization: An Econometric Perspective Analysis," Energies, MDPI, vol. 15(24), pages 1-18, December.
    22. Jie Chang & Pingjun Sun & Guoen Wei, 2022. "Spatial Driven Effects of Multi-Dimensional Urbanization on Carbon Emissions: A Case Study in Chengdu-Chongqing Urban Agglomeration," Land, MDPI, vol. 11(10), pages 1-19, October.
    23. Jiang, Qichuan & Ma, Xuejiao, 2021. "Spillovers of environmental regulation on carbon emissions network," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    24. Wang, Bo & Zhao, Jun & Dong, Kangyin & Jiang, Qingzhe, 2022. "High-quality energy development in China: Comprehensive assessment and its impact on CO2 emissions," Energy Economics, Elsevier, vol. 110(C).
    25. Wei, Jia & Wen, Jun & Wang, Xiao-Yang & Ma, Jie & Chang, Chun-Ping, 2023. "Green innovation, natural extreme events, and energy transition: Evidence from Asia-Pacific economies," Energy Economics, Elsevier, vol. 121(C).
    26. Weisong Li & Zhenwei Wang & Zhibin Mao & Jiaxing Cui, 2022. "Spatially Non-Stationary Response of Carbon Emissions to Urbanization in Han River Ecological Economic Belt, China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    27. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    28. Feng Han & Min Huang, 2022. "Land Misallocation and Carbon Emissions: Evidence from China," Land, MDPI, vol. 11(8), pages 1-30, July.
    29. Awan, Ashar & Alnour, Mohammed & Jahanger, Atif & Onwe, Joshua Chukwuma, 2022. "Do technological innovation and urbanization mitigate carbon dioxide emissions from the transport sector?," Technology in Society, Elsevier, vol. 71(C).
    30. Qianxiao Zhang & Syed Asif Ali Naqvi & Syed Ale Raza Shah, 2021. "The Contribution of Outward Foreign Direct Investment, Human Well-Being, and Technology toward a Sustainable Environment," Sustainability, MDPI, vol. 13(20), pages 1-29, October.
    31. Huang, Xiaoyong & Yu, Cong & Chen, Yunping & Jia, Fei & Xu, Xiangyun, 2022. "Rigid payment breaking, default spread and yields of Chinese treasury bonds," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    32. Sakketa, Tekalign Gutu, 2023. "Urbanisation and social cohesion: Theory and empirical evidence from Africa," IDOS Discussion Papers 16/2023, German Institute of Development and Sustainability (IDOS).
    33. Sai Yuan & Xiongfeng Pan, 2023. "The spatiotemporal effects of green fiscal expenditure on low-carbon transition: empirical evidence from china’s low-carbon pilot cities," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 70(2), pages 507-533, April.
    34. Gao, Kang & Yuan, Yijun, 2021. "The effect of innovation-driven development on pollution reduction: Empirical evidence from a quasi-natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    35. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    36. Xinyue Yuan & Yang Nie & Liangen Zeng & Chao Lu & Tingzhang Yang, 2023. "Exploring the Impacts of Urbanization on Eco-Efficiency in China," Land, MDPI, vol. 12(3), pages 1-14, March.
    37. Du, Gang & Li, Wendi, 2022. "Does innovative city building promote green logistics efficiency? Evidence from a quasi-natural experiment with 285 cities," Energy Economics, Elsevier, vol. 114(C).
    38. Wenhao Qi & Changxing Song & Meng Sun & Liguo Wang & Youcheng Han, 2022. "Sustainable Growth Drivers: Unveiling the Role Played by Carbon Productivity," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    39. Feifei Tan & Shasha Yang & Zhiyuan Niu, 2023. "The impact of urbanization on carbon emissions: both from heterogeneity and mechanism test," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 4813-4829, June.
    40. Yongjiao Wu & Huazhu Zheng & Yu Li & Claudio O. Delang & Jiao Qian, 2021. "Carbon Productivity and Mitigation: Evidence from Industrial Development and Urbanization in the Central and Western Regions of China," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    41. Abudureheman, Maliyamu & Jiang, Qingzhe & Dong, Xiucheng & Dong, Cong, 2022. "Spatial effects of dynamic comprehensive energy efficiency on CO2 reduction in China," Energy Policy, Elsevier, vol. 166(C).
    42. Guimei Wang & Muhammad Salman, 2023. "The impacts of heterogeneous environmental regulations on green economic efficiency from the perspective of urbanization: a dynamic threshold analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9485-9516, September.
    43. Wang, Ye, 2023. "What drives sustainable development? Evaluating the role of oil and coal resources for selected resource rich economies," Resources Policy, Elsevier, vol. 80(C).
    44. Xu, Jiajun & Wang, Jinchao & Li, Rui & Yang, Xiaojun, 2023. "Spatio-temporal effects of urbanization on CO2 emissions: Evidences from 268 Chinese cities," Energy Policy, Elsevier, vol. 177(C).
    45. Jiao Wang & Zhenliang Liao & Hui Sun, 2023. "Analysis of Carbon Emission Efficiency in the Yellow River Basin in China: Spatiotemporal Differences and Influencing Factors," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    46. Li, Shuoshuo & Liu, Yaobin & Elahi, Ehsan & Meng, Xiao & Deng, Weifeng, 2023. "A new type of urbanization policy and transition of low-carbon society: A "local- neighborhood" perspective," Land Use Policy, Elsevier, vol. 131(C).
    47. Fan, Jingjing & Wang, Jianliang & Qiu, Jixiang & Li, Nu, 2023. "Stage effects of energy consumption and carbon emissions in the process of urbanization: Evidence from 30 provinces in China," Energy, Elsevier, vol. 276(C).

  5. Zhu, Zhishuang & Liao, Hua & Liu, Li, 2021. "The role of public energy R&D in energy conservation and transition: Experiences from IEA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Cited by:

    1. Ayomikun Bello & Anastasia Ivanova & Alexey Cheremisin, 2023. "A Comprehensive Review of the Role of CO 2 Foam EOR in the Reduction of Carbon Footprint in the Petroleum Industry," Energies, MDPI, vol. 16(3), pages 1-20, January.
    2. Liping Liao & Chukun Huang & Minzhe Du, 2022. "The Effect of Energy Quota Trading on Energy Saving in China: Insight from a Quasi-Natural Experiment," Energies, MDPI, vol. 15(22), pages 1-17, November.
    3. Piaopeng Song & Yuxiao Gu & Bin Su & Arifa Tanveer & Qiao Peng & Weijun Gao & Shaomin Wu & Shihong Zeng, 2023. "The Impact of Green Technology Research and Development (R&D) Investment on Performance: A Case Study of Listed Energy Companies in Beijing, China," Sustainability, MDPI, vol. 15(16), pages 1-24, August.
    4. Li, Kai & Tan, Xiujie & Yan, Yaxue & Jiang, Dalin & Qi, Shaozhou, 2022. "Directing energy transition toward decarbonization: The China story," Energy, Elsevier, vol. 261(PA).
    5. Larissa Nogueira & Francesco Dalla Longa & Lara Aleluia Reis & Laurent Drouet & Zoi Vrontisi & Kostas Fragkiadakis & Evangelos Panos & Bob Zwaan, 2023. "A multi-model framework to assess the role of R&D towards a decarbonized energy system," Climatic Change, Springer, vol. 176(7), pages 1-22, July.

  6. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-cui & Yu, Bi-Ying & Liao, Hua, 2021. "A social learning approach to carbon capture and storage demonstration project management: An empirical analysis," Applied Energy, Elsevier, vol. 299(C).

    Cited by:

    1. Fang, Tianhui & Zheng, Chunling & Wang, Donghua, 2023. "Forecasting the crude oil prices with an EMD-ISBM-FNN model," Energy, Elsevier, vol. 263(PA).
    2. Sara Yasemi & Yasin Khalili & Ali Sanati & Mohammadreza Bagheri, 2023. "Carbon Capture and Storage: Application in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(19), pages 1-32, October.
    3. Yanbin Li & Yanting Sun & Yulin Kang & Feng Zhang & Junjie Zhang, 2023. "An Optimal Site Selection Framework for Near-Zero Carbon Emission Power Plants Based on Multiple Stakeholders," Energies, MDPI, vol. 16(2), pages 1-26, January.

  7. Yi-Ming Wei & Jia-Ning Kang & Lan-Cui Liu & Qi Li & Peng-Tao Wang & Juan-Juan Hou & Qiao-Mei Liang & Hua Liao & Shi-Feng Huang & Biying Yu, 2021. "A proposed global layout of carbon capture and storage in line with a 2 °C climate target," Nature Climate Change, Nature, vol. 11(2), pages 112-118, February.

    Cited by:

    1. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-cui & Wang, Jin-Wei, 2021. "Observing technology reserves of carbon capture and storage via patent data: Paving the way for carbon neutral," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    2. Changwan Gu & Jingjing Xie & Xiaoyu Li & Xu Gao, 2023. "Levelized Cost Analysis for Blast Furnace CO 2 Capture, Utilization, and Storage Retrofit in China’s Blast Furnace–Basic Oxygen Furnace Steel Plants," Energies, MDPI, vol. 16(23), pages 1-20, November.
    3. Andrew K. Chu & Sally M. Benson & Gege Wen, 2022. "Deep-Learning-Based Flow Prediction for CO 2 Storage in Shale–Sandstone Formations," Energies, MDPI, vol. 16(1), pages 1-21, December.
    4. Muhammad Hammad Rasool & Maqsood Ahmad & Muhammad Ayoub, 2023. "Selecting Geological Formations for CO 2 Storage: A Comparative Rating System," Sustainability, MDPI, vol. 15(8), pages 1-39, April.
    5. He, Jianjian & Yang, Yi & Liao, Zhongju & Xu, Anqi & Fang, Kai, 2022. "Linking SDG 7 to assess the renewable energy footprint of nations by 2030," Applied Energy, Elsevier, vol. 317(C).
    6. Ikonnikova, Svetlana A. & Scanlon, Bridget R. & Berdysheva, Sofia A., 2023. "A global energy system perspective on hydrogen Trade: A framework for the market color and the size analysis," Applied Energy, Elsevier, vol. 330(PA).
    7. Xu, Liang & Li, Qi & Myers, Matthew & Cao, Xiaomin, 2023. "Investigation of the enhanced oil recovery mechanism of CO2 synergistically with nanofluid in tight glutenite," Energy, Elsevier, vol. 273(C).
    8. Jing, Jing & Yang, Yanlin & Cheng, Jianmei & Ding, Zhaojing & Wang, Dandan & Jing, Xianwen, 2023. "Analysis of the effect of formation dip angle and injection pressure on the injectivity and migration of CO2 during storage," Energy, Elsevier, vol. 280(C).
    9. Brenda H. M. Silveira & Hirdan K. M. Costa & Edmilson M. Santos, 2023. "Bioenergy with Carbon Capture and Storage (BECCS) in Brazil: A Review," Energies, MDPI, vol. 16(4), pages 1-18, February.
    10. Masood S. Alivand & Omid Mazaheri & Yue Wu & Ali Zavabeti & Andrew J. Christofferson & Nastaran Meftahi & Salvy P. Russo & Geoffrey W. Stevens & Colin A. Scholes & Kathryn A. Mumford, 2022. "Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Minwoo Hyun & Aleh Cherp & Jessica Jewell & Yeong Jae Kim & Jiyong Eom, 2021. "Feasibility trade-offs in decarbonisation of power sector with high coal dependence: A case of Korea," Papers 2111.02872, arXiv.org.

  8. Wu, Jingwen & Liao, Hua & Wang, Jin-Wei, 2020. "Analysis of consumer attitudes towards autonomous, connected, and electric vehicles: A survey in China," Research in Transportation Economics, Elsevier, vol. 80(C).

    Cited by:

    1. Wang, Song & Li, Zhixia & Wang, Yi & Aaron Wyatt, Daniel, 2022. "How do age and gender influence the acceptance of automated vehicles? – Revealing the hidden mediating effects from the built environment and personal factors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 376-394.
    2. Jose Esteves & Daniel Alonso-Martínez & Guillermo de Haro, 2021. "Profiling Spanish Prospective Buyers of Electric Vehicles Based on Demographics," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    3. Zhao, Xingrong & Ma, Ye & Shao, Shuai & Ma, Tieju, 2022. "What determines consumers' acceptance of electric vehicles: A survey in Shanghai, China," Energy Economics, Elsevier, vol. 108(C).
    4. Idiano D’Adamo & Massimo Gastaldi & Jacopo Piccioni & Paolo Rosa, 2023. "The Role of Automotive Flexibility in Supporting the Diffusion of Sustainable Mobility Initiatives: A Stakeholder Attitudes Assessment," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(3), pages 459-481, September.
    5. Gkoumas, Konstantinos & van Balen, Mitchell & Tsakalidis, Anastasios & Pekar, Ferenc, 2022. "Evaluating the development of transport technologies in European research and innovation projects between 2007 and 2020," Research in Transportation Economics, Elsevier, vol. 92(C).
    6. Almansour, Mohammed, 2022. "Electric vehicles (EV) and sustainability: Consumer response to twin transition, the role of e-businesses and digital marketing," Technology in Society, Elsevier, vol. 71(C).
    7. Ieva Meidute-Kavaliauskiene & Bülent Yıldız & Şemsettin Çiğdem & Renata Činčikaitė, 2021. "Do People Prefer Cars That People Don’t Drive? A Survey Study on Autonomous Vehicles," Energies, MDPI, vol. 14(16), pages 1-21, August.
    8. Yao, Xusheng & Ma, Shoufeng & Bai, Yin & Jia, Ning, 2022. "When are new energy vehicle incentives effective? Empirical evidence from 88 pilot cities in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 207-224.
    9. Reema Bera & Bhargab Maitra, 2021. "Analyzing Prospective Owners’ Choice Decision towards Plug-in Hybrid Electric Vehicles in Urban India: A Stated Preference Discrete Choice Experiment," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    10. Yilun Chen & Nirajan Shiwakoti & Peter Stasinopoulos & Shah Khalid Khan, 2022. "State-of-the-Art of Factors Affecting the Adoption of Automated Vehicles," Sustainability, MDPI, vol. 14(11), pages 1-29, May.
    11. Wang, Yuanyuan & Chi, Yuanying & Xu, Jin-Hua & Yuan, Yongke, 2022. "Consumers’ attitudes and their effects on electric vehicle sales and charging infrastructure construction: An empirical study in China," Energy Policy, Elsevier, vol. 165(C).
    12. Hu, Jia-Wei & Javaid, Aneeque & Creutzig, Felix, 2021. "Leverage points for accelerating adoption of shared electric cars: Perceived benefits and environmental impact of NEVs," Energy Policy, Elsevier, vol. 155(C).
    13. Upadhyay, Nitin & Kamble, Aakash, 2023. "Examining Indian consumer pro-environment purchase intention of electric vehicles: Perspective of stimulus-organism-response," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    14. Yongjing Li & Wenhui Pei & Qi Zhang, 2022. "Improved Whale Optimization Algorithm Based on Hybrid Strategy and Its Application in Location Selection for Electric Vehicle Charging Stations," Energies, MDPI, vol. 15(19), pages 1-25, September.
    15. Paula Andrea Rodríguez-Correa & Sebastián Franco-Castaño & Jonathan Bermúdez-Hernández & Alejandro Valencia-Arias & José Manuel Barandiarán-Gamarra, 2023. "Attitudinal Factors Associated with the Use of Bicycles and Electric Scooters," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    16. Maeng, Kyuho & Jeon, Seung Ryong & Park, Taeho & Cho, Youngsang, 2021. "Network effects of connected and autonomous vehicles in South Korea: A consumer preference approach," Research in Transportation Economics, Elsevier, vol. 90(C).
    17. Asmussen, Katherine E. & Mondal, Aupal & Bhat, Chandra R., 2022. "Adoption of partially automated vehicle technology features and impacts on vehicle miles of travel (VMT)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 156-179.
    18. Paweł Bryła & Shuvam Chatterjee & Beata Ciabiada-Bryła, 2022. "Consumer Adoption of Electric Vehicles: A Systematic Literature Review," Energies, MDPI, vol. 16(1), pages 1-16, December.
    19. Dongming Wu & Liukai Yu & Qianqian Zhang & Yangyang Jiao & Yuhe Wu, 2021. "Materialism, Ecological Consciousness and Purchasing Intention of Electric Vehicles: An Empirical Analysis among Chinese Consumers," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    20. Bastida-Molina, Paula & Ribó-Pérez, David & Gómez-Navarro, Tomás & Hurtado-Pérez, Elías, 2022. "What is the problem? The obstacles to the electrification of urban mobility in Mediterranean cities. Case study of Valencia, Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    21. Ayetor, G.K. & Mbonigaba, Innocent & Sunnu, Albert K. & Nyantekyi-Kwakye, Baafour, 2021. "Impact of replacing ICE bus fleet with electric bus fleet in Africa: A lifetime assessment," Energy, Elsevier, vol. 221(C).
    22. Pan, Xiaofeng & Liu, Shaobo, 2022. "Modeling travel choice behavior with the concept of image: A case study of college students’ choice of homecoming train trips during the Spring Festival travel rush in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 247-258.
    23. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.

  9. Hao, Yu & Chen, Yu-Fu & Liao, Hua & Wei, Yi-Ming, 2020. "China's fiscal decentralization and environmental quality: theory and an empirical study," Environment and Development Economics, Cambridge University Press, vol. 25(2), pages 159-181, April.

    Cited by:

    1. Meng Lingyan & Ze Zhao & Haider Ali Malik & Asif Razzaq & Hui An & Marria Hassan, 2022. "Asymmetric impact of fiscal decentralization and environmental innovation on carbon emissions: Evidence from highly decentralized countries," Energy & Environment, , vol. 33(4), pages 752-782, June.
    2. Sun, Yunpeng & Gao, Pengpeng & Razzaq, Asif, 2023. "How does fiscal decentralization lead to renewable energy transition and a sustainable environment? Evidence from highly decentralized economies," Renewable Energy, Elsevier, vol. 206(C), pages 1064-1074.
    3. Khan, Zeeshan & Ali, Shahid & Dong, Kangyin & Li, Rita Yi Man, 2021. "How does fiscal decentralization affect CO2 emissions? The roles of institutions and human capital," Energy Economics, Elsevier, vol. 94(C).
    4. Zhang, Cuifang & Xiang, Xiandeng, 2023. "Fiscal decentralization, environmental policy stringency, and resource sustainability: Panacea or Pandora's box in high resource consuming countries," Resources Policy, Elsevier, vol. 83(C).
    5. Shahbaz, Muhammad & Abbas Rizvi, Syed Kumail & Dong, Kangyin & Vo, Xuan Vinh, 2022. "Fiscal decentralization as new determinant of renewable energy demand in China: The role of income inequality and urbanization," Renewable Energy, Elsevier, vol. 187(C), pages 68-80.
    6. Wanfang Xiong & Yan Han & M. James C. Crabbe & Xiao-Guang Yue, 2020. "Fiscal Expenditures on Science and Technology and Environmental Pollution: Evidence from China," IJERPH, MDPI, vol. 17(23), pages 1-20, November.
    7. Wenke Wang & Xiaoqiong You & Kebei Liu & Yenchun Jim Wu & Daming You, 2020. "Implementation of a Multi-Agent Carbon Emission Reduction Strategy under the Chinese Dual Governance System: An Evolutionary Game Theoretical Approach," IJERPH, MDPI, vol. 17(22), pages 1-21, November.
    8. Shi Chen & Xun Liu & Chong Lu, 2022. "Fiscal Decentralization, Local Government Behavior, and Macroeconomic Effects of Environmental Policy," Sustainability, MDPI, vol. 14(17), pages 1-18, September.
    9. Shan, Shan & Ahmad, Munir & Tan, Zhixiong & Adebayo, Tomiwa Sunday & Man Li, Rita Yi & Kirikkaleli, Dervis, 2021. "The role of energy prices and non-linear fiscal decentralization in limiting carbon emissions: Tracking environmental sustainability," Energy, Elsevier, vol. 234(C).
    10. Ayoub Zeraibi & Daniel Balsalobre-Lorente & Khurram Shehzad, 2021. "Testing the Environmental Kuznets Curve Hypotheses in Chinese Provinces: A Nexus between Regional Government Expenditures and Environmental Quality," IJERPH, MDPI, vol. 18(18), pages 1-16, September.
    11. Xi Wu & Yajuan Wang & Hongbo Zhu, 2022. "Does Economic Growth Lead to an Increase in Cultivated Land Pressure? Evidence from China," Land, MDPI, vol. 11(9), pages 1-19, September.
    12. Maxwell Chukwudi Udeagha & Edwin Muchapondwa, 2023. "Environmental sustainability in South Africa: Understanding the criticality of economic policy uncertainty, fiscal decentralization, and green innovation," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1638-1651, June.
    13. Jiang, Weijie & Li, Yidong, 2023. "Effect of fiscal decentralization on pollution reduction: Firm-level evidence from China," Economic Modelling, Elsevier, vol. 129(C).
    14. Hao, Yu & Zhang, Zong-Yong & Yang, Chuxiao & Wu, Haitao, 2021. "Does structural labor change affect CO2 emissions? Theoretical and empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    15. Yuchen Song & Jingshu Ma & Shuai Guan & Yongfu Liu, 2022. "Fiscal Decentralization, Regional Innovation and Industrial Structure Distortions in China," Sustainability, MDPI, vol. 15(1), pages 1-17, December.

  10. Hao, Yu & Chen, Yu-Fu & Liao, Hua & Wei, Yi-Ming, 2020. "China's fiscal decentralization and environmental quality: theory and an empirical study – Erratum," Environment and Development Economics, Cambridge University Press, vol. 25(2), pages 204-204, April.

    Cited by:

    1. Meng Lingyan & Ze Zhao & Haider Ali Malik & Asif Razzaq & Hui An & Marria Hassan, 2022. "Asymmetric impact of fiscal decentralization and environmental innovation on carbon emissions: Evidence from highly decentralized countries," Energy & Environment, , vol. 33(4), pages 752-782, June.
    2. Sun, Yunpeng & Gao, Pengpeng & Razzaq, Asif, 2023. "How does fiscal decentralization lead to renewable energy transition and a sustainable environment? Evidence from highly decentralized economies," Renewable Energy, Elsevier, vol. 206(C), pages 1064-1074.
    3. Zhang, Cuifang & Xiang, Xiandeng, 2023. "Fiscal decentralization, environmental policy stringency, and resource sustainability: Panacea or Pandora's box in high resource consuming countries," Resources Policy, Elsevier, vol. 83(C).
    4. Shahbaz, Muhammad & Abbas Rizvi, Syed Kumail & Dong, Kangyin & Vo, Xuan Vinh, 2022. "Fiscal decentralization as new determinant of renewable energy demand in China: The role of income inequality and urbanization," Renewable Energy, Elsevier, vol. 187(C), pages 68-80.
    5. Shi Chen & Xun Liu & Chong Lu, 2022. "Fiscal Decentralization, Local Government Behavior, and Macroeconomic Effects of Environmental Policy," Sustainability, MDPI, vol. 14(17), pages 1-18, September.
    6. Shan, Shan & Ahmad, Munir & Tan, Zhixiong & Adebayo, Tomiwa Sunday & Man Li, Rita Yi & Kirikkaleli, Dervis, 2021. "The role of energy prices and non-linear fiscal decentralization in limiting carbon emissions: Tracking environmental sustainability," Energy, Elsevier, vol. 234(C).
    7. Maxwell Chukwudi Udeagha & Edwin Muchapondwa, 2023. "Environmental sustainability in South Africa: Understanding the criticality of economic policy uncertainty, fiscal decentralization, and green innovation," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1638-1651, June.
    8. Jiang, Weijie & Li, Yidong, 2023. "Effect of fiscal decentralization on pollution reduction: Firm-level evidence from China," Economic Modelling, Elsevier, vol. 129(C).
    9. Hao, Yu & Zhang, Zong-Yong & Yang, Chuxiao & Wu, Haitao, 2021. "Does structural labor change affect CO2 emissions? Theoretical and empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    10. Yuchen Song & Jingshu Ma & Shuai Guan & Yongfu Liu, 2022. "Fiscal Decentralization, Regional Innovation and Industrial Structure Distortions in China," Sustainability, MDPI, vol. 15(1), pages 1-17, December.

  11. Wu, Jingwen & Liao, Hua, 2020. "Weather, travel mode choice, and impacts on subway ridership in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 264-279.

    Cited by:

    1. Kevin Lanza & Casey P. Durand, 2021. "Heat-Moderating Effects of Bus Stop Shelters and Tree Shade on Public Transport Ridership," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    2. Zhentao Li & Tianzi Li, 2022. "How Does City Size Affect the Cost of Household Travel? Evidence from an Urban Household Survey in China," IJERPH, MDPI, vol. 19(11), pages 1-20, June.
    3. Zhang, Qian & Liu, Xiaoxiao & Spurgeon, Sarah & Yu, Dingli, 2021. "A two-layer modelling framework for predicting passenger flow on trains: A case study of London underground trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 119-139.
    4. Jiang, Shixiong & Cai, Canhuang, 2022. "Unraveling the dynamic impacts of COVID-19 on metro ridership: An empirical analysis of Beijing and Shanghai, China," Transport Policy, Elsevier, vol. 127(C), pages 158-170.
    5. Wei, Ming, 2022. "How does the weather affect public transit ridership? A model with weather-passenger variations," Journal of Transport Geography, Elsevier, vol. 98(C).
    6. Stefan Gössling & Christoph Neger & Robert Steiger & Rainer Bell, 2023. "Weather, climate change, and transport: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1341-1360, September.
    7. Wu, Pan & Xu, Lunhui & Zhong, Lingshu & Gao, Kun & Qu, Xiaobo & Pei, Mingyang, 2022. "Revealing the determinants of the intermodal transfer ratio between metro and bus systems considering spatial variations," Journal of Transport Geography, Elsevier, vol. 104(C).
    8. Lin, Shichao & Zhu, Songwei & Li, Xiangmin & Li, Ruimin, 2022. "Effects of strict vehicle restrictions on various travel modes: A case study of Zhengzhou, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 310-323.
    9. Zhang, Xiang & Li, Wence, 2023. "Effects of a bike sharing system and COVID-19 on low-carbon traffic modal shift and emission reduction," Transport Policy, Elsevier, vol. 132(C), pages 42-64.
    10. Yang, Xiaobao & Yue, Xianfei & Sun, Huijun & Gao, Ziyou & Wang, Wencheng, 2021. "Impact of weather on freeway origin-destination volume in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 30-47.
    11. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.
    12. Wei, Ming, 2022. "Investigating the influence of weather on public transit passenger’s travel behaviour: Empirical findings from Brisbane, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 36-51.

  12. Yi-Ming Wei & Rong Han & Ce Wang & Biying Yu & Qiao-Mei Liang & Xiao-Chen Yuan & Junjie Chang & Qingyu Zhao & Hua Liao & Baojun Tang & Jinyue Yan & Lijing Cheng & Zili Yang, 2020. "Self-preservation strategy for approaching global warming targets in the post-Paris Agreement era," Nature Communications, Nature, vol. 11(1), pages 1-13, December.

    Cited by:

    1. Chen, Xiaotong & Yang, Fang & Zhang, Shining & Zakeri, Behnam & Chen, Xing & Liu, Changyi & Hou, Fangxin, 2021. "Regional emission pathways, energy transition paths and cost analysis under various effort-sharing approaches for meeting Paris Agreement goals," Energy, Elsevier, vol. 232(C).
    2. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-cui & Wang, Jin-Wei, 2021. "Observing technology reserves of carbon capture and storage via patent data: Paving the way for carbon neutral," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    3. Chen, Hao & Qi, Shaozhou & Zhang, Jihong, 2022. "Towards carbon neutrality with Chinese characteristics: From an integrated perspective of economic growth-equity-environment," Applied Energy, Elsevier, vol. 324(C).
    4. Sorin Cheval & Cristian Mihai Adamescu & Teodoro Georgiadis & Mathew Herrnegger & Adrian Piticar & David R. Legates, 2020. "Observed and Potential Impacts of the COVID-19 Pandemic on the Environment," IJERPH, MDPI, vol. 17(11), pages 1-25, June.
    5. Jin, Gui & Shi, Xin & Zhang, Lei & Hu, Shougeng, 2020. "Measuring the SCCs of different Chinese regions under future scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    7. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    8. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    9. Masood S. Alivand & Omid Mazaheri & Yue Wu & Ali Zavabeti & Andrew J. Christofferson & Nastaran Meftahi & Salvy P. Russo & Geoffrey W. Stevens & Colin A. Scholes & Kathryn A. Mumford, 2022. "Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Denis Maragno & Carlo Federico dall’Omo & Gianfranco Pozzer & Niccolò Bassan & Francesco Musco, 2020. "Land–Sea Interaction: Integrating Climate Adaptation Planning and Maritime Spatial Planning in the North Adriatic Basin," Sustainability, MDPI, vol. 12(13), pages 1-29, July.
    11. Javed, Aamir & Rapposelli, Agnese & Khan, Feroz & Javed, Asif, 2023. "The impact of green technology innovation, environmental taxes, and renewable energy consumption on ecological footprint in Italy: Fresh evidence from novel dynamic ARDL simulations," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    12. Khalil Ullah Mohammad & Mohsin Raza Khan, 2022. "Effectiveness Of Green Project Screening For Bank Lending: Evidence From Pakistan," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 11(1), pages 93-103, March.
    13. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Dong, Kangyin & Liu, Li-Jing, 2022. "The cost-benefit comparisons of China's and India's NDCs based on carbon marginal abatement cost curves," Energy Economics, Elsevier, vol. 109(C).
    14. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    15. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).

  13. Kun Zhang & Qiao-Mei Liang & Li-Jing Liu & Mei-Mei Xue & Bi-Ying Yu & Ce Wang & Rong Han & Yun-Fei Du & Yun-Fei Yao & Jun-Jie Chang & Jinxiao Tan & Hua Liao & Yi-Ming Wei, 2020. "Impacts Of Mechanisms To Promote Participation In Climate Mitigation: Border Carbon Adjustments Versus Uniform Tariff Measures," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 1-26, August.

    Cited by:

    1. Banerjee, Suvajit, 2021. "Conjugation of border and domestic carbon adjustment and implications under production and consumption-based accounting of India's National Emission Inventory: A recursive dynamic CGE analysis," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 68-86.
    2. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Dong, Kangyin & Liu, Li-Jing, 2022. "The cost-benefit comparisons of China's and India's NDCs based on carbon marginal abatement cost curves," Energy Economics, Elsevier, vol. 109(C).

  14. Zhifu Mi & Hua Liao & D’Maris Coffman & Yi-Ming Wei, 2019. "Assessment of equity principles for international climate policy based on an integrated assessment model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 309-323, January.

    Cited by:

    1. Li, Mengyu & Duan, Maosheng, 2020. "Efforts-sharing to achieve the Paris goals: Ratcheting-up of NDCs and taking full advantage of international carbon market," Applied Energy, Elsevier, vol. 280(C).
    2. Biying Yu & Zihao Zhao & Yi-Ming Wei & Lan-Cui Liu & Qingyu Zhao & Shuo Xu & Jia-Ning Kang & Hua Liao, 2023. "Approaching national climate targets in China considering the challenge of regional inequality," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Jin, Gui & Shi, Xin & Zhang, Lei & Hu, Shougeng, 2020. "Measuring the SCCs of different Chinese regions under future scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Gebara, C.H. & Laurent, A., 2023. "National SDG-7 performance assessment to support achieving sustainable energy for all within planetary limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Yu Liu & Mingxi Du & Qi Cui & Jintai Lin & Yawen Liu & Qiuyu Liu & Dan Tong & Kuishuang Feng & Klaus Hubacek, 2022. "Contrasting suitability and ambition in regional carbon mitigation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

  15. Chen Zhang & Hua Liao & Zhifu Mi, 2019. "Climate impacts: temperature and electricity consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1259-1275, December.

    Cited by:

    1. Miaomiao Niu & Guohao Li, 2022. "The Impact of Climate Change Risks on Residential Consumption in China: Evidence from ARMAX Modeling and Granger Causality Analysis," IJERPH, MDPI, vol. 19(19), pages 1-15, September.
    2. Kaneko, Nanae & Fujimoto, Yu & Kabe, Satoshi & Hayashida, Motonari & Hayashi, Yasuhiro, 2020. "Sparse modeling approach for identifying the dominant factors affecting situation-dependent hourly electricity demand," Applied Energy, Elsevier, vol. 265(C).
    3. Kamal Chapagain & Somsak Kittipiyakul & Pisut Kulthanavit, 2020. "Short-Term Electricity Demand Forecasting: Impact Analysis of Temperature for Thailand," Energies, MDPI, vol. 13(10), pages 1-29, May.
    4. Tong Wu & Zhe You & Mengqi Gong & Jinhua Cheng, 2021. "Star Wars? Space Weather and Electricity Market: Evidence from China," Energies, MDPI, vol. 14(17), pages 1-14, August.

  16. Zhishuang Zhu & Hua Liao, 2019. "Do subsidies improve the financial performance of renewable energy companies? Evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 241-256, January.

    Cited by:

    1. Yu Zhang & Jie Wang & Jiakai Chen & Weizhong Liu, 2023. "Does environmental regulation policy help improve business performance of manufacturing enterprises? evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4335-4364, May.
    2. Kai Chang & Ning Lu & Ze Sheng Li & Yi Ran Wang, 2021. "The combined impacts of fiscal and credit policies on green firm's investment opportunity: Evidences from Chinese firm‐level analysis," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(7), pages 1822-1835, October.
    3. Dariusz Kusz & Iwona Bąk & Beata Szczecińska & Ludwik Wicki & Bożena Kusz, 2022. "Determinants of Return-on-Equity (ROE) of Biogas Plants Operating in Poland," Energies, MDPI, vol. 16(1), pages 1-22, December.
    4. Luan, Ranran & Lin, Boqiang, 2022. "Positive or negative? Study on the impact of government subsidy on the business performance of China's solar photovoltaic industry," Renewable Energy, Elsevier, vol. 189(C), pages 1145-1153.
    5. Yana Buravleva & Decai Tang & Brandon J. Bethel, 2021. "Incentivizing Innovation: The Causal Role of Government Subsidies on Lithium-Ion Battery Research and Development," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    6. Semmler Willi & Di Bartolomeo Giovanni & Fard Behnaz Minooei & Braga Joao Paulo, 2022. "Limit Pricing and Entry Game of Renewable Energy Firms into the Energy Sector," wp.comunite 00158, Department of Communication, University of Teramo.
    7. Zhang, Wenwen & Chiu, Yi-Bin & Hsiao, Cody Yu-Ling, 2022. "Effects of country risks and government subsidies on renewable energy firms’ performance: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Dong, Weiwei & Zhao, Guohua & Yüksel, Serhat & Dinçer, Hasan & Ubay, Gözde Gülseven, 2022. "A novel hybrid decision making approach for the strategic selection of wind energy projects," Renewable Energy, Elsevier, vol. 185(C), pages 321-337.
    9. Zhang, Wenwen & Chiu, Yi-Bin, 2023. "Country risks, government subsidies, and Chinese renewable energy firm performance: New evidence from a quantile regression," Energy Economics, Elsevier, vol. 119(C).

  17. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.

    Cited by:

    1. Huntington, Hillard & Barrios, James & Arora, Vipin, 2017. "Review of Key International Demand Elasticities for Major Industrializing Economies," MPRA Paper 95890, University Library of Munich, Germany, revised Aug 2019.
    2. Wang, Shubin & Sun, Shaolong & Zhao, Erlong & Wang, Shouyang, 2021. "Urban and rural differences with regional assessment of household energy consumption in China," Energy, Elsevier, vol. 232(C).
    3. An, Kangxin & Zhang, Shihui & Huang, Hai & Liu, Yuan & Cai, Wenjia & Wang, Can, 2021. "Socioeconomic impacts of household participation in emission trading scheme: A Computable General Equilibrium-based case study," Applied Energy, Elsevier, vol. 288(C).
    4. Li, Meng & Jin, Tianyu & Liu, Shenglong & Zhou, Shaojie, 2021. "The cost of clean energy transition in rural China: Evidence based on marginal treatment effects," Energy Economics, Elsevier, vol. 97(C).
    5. Mengshu, Shi & Yuansheng, Huang & Xiaofeng, Xu & Dunnan, Liu, 2021. "China's coal consumption forecasting using adaptive differential evolution algorithm and support vector machine," Resources Policy, Elsevier, vol. 74(C).
    6. Zhang, Lingyue & Li, Hui & Chen, Tianqi & Liao, Hua, 2022. "Health effects of cooking fuel transition: A dynamic perspective," Energy, Elsevier, vol. 251(C).
    7. Syed Hasan & Odmaa Narantungalag, & Martin Berka, 2022. "The intended and unintended consequences of large electricity subsidies: evidence from Mongolia," Discussion Papers 2202, School of Economics and Finance, Massey University, New Zealand.
    8. Youzhi Zeng & Bin Ran & Ning Zhang & Xiaobao Yang, 2021. "Estimating the Price Elasticity of Train Travel Demand and Its Variation Rules and Application in Energy Used and CO 2 Emissions," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    9. Fijorek, Kamil & Jurkowska, Aleksandra & Jonek-Kowalska, Izabela, 2021. "Financial contagion between the financial and the mining industries – Empirical evidence based on the symmetric and asymmetric CoVaR approach," Resources Policy, Elsevier, vol. 70(C).
    10. Qiao, Hui & Chen, Siyu & Dong, Xiucheng & Dong, Kangyin, 2019. "Has China's coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity," Energy Economics, Elsevier, vol. 84(C).
    11. Ling Du & Hasan Dinçer & İrfan Ersin & Serhat Yüksel, 2020. "IT2 Fuzzy-Based Multidimensional Evaluation of Coal Energy for Sustainable Economic Development," Energies, MDPI, vol. 13(10), pages 1-21, May.
    12. Zhu, Lin & Liao, Hua & Burke, Paul J., 2023. "Household fuel transitions have substantially contributed to child mortality reductions in China," World Development, Elsevier, vol. 164(C).
    13. Yujing Liu & Ruoyun Du & Dongxiao Niu, 2022. "Forecast of Coal Demand in Shanxi Province Based on GA—LSSVM under Multiple Scenarios," Energies, MDPI, vol. 15(17), pages 1-16, September.

  18. Tian, Jing & Andraded, Celio & Lumbreras, Julio & Guan, Dabo & Wang, Fangzhi & Liao, Hua, 2018. "Integrating Sustainability Into City-level CO2 Accounting: Social Consumption Pattern and Income Distribution," Ecological Economics, Elsevier, vol. 153(C), pages 1-16.

    Cited by:

    1. Junsong Jia & Jing Lei & Chundi Chen & Xu Song & Yexi Zhong, 2021. "Contribution of Renewable Energy Consumption to CO 2 Emission Mitigation: A Comparative Analysis from a Global Geographic Perspective," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    2. Chen, Peipei & Wu, Yi & Zhong, Honglin & Long, Yin & Meng, Jing, 2022. "Exploring household emission patterns and driving factors in Japan using machine learning methods," Applied Energy, Elsevier, vol. 307(C).
    3. Du, Huibin & Chen, Zhenni & Peng, Binbin & Southworth, Frank & Ma, Shoufeng & Wang, Yuan, 2019. "What drives CO2 emissions from the transport sector? A linkage analysis," Energy, Elsevier, vol. 175(C), pages 195-204.

  19. Liao, Hua & Cao, Huai-Shu, 2018. "The pattern of electricity use in residential sector: The experiences from 133 economies," Energy, Elsevier, vol. 145(C), pages 515-525.

    Cited by:

    1. Lin, Boqiang & Chen, Xing, 2018. "Is the implementation of the Increasing Block Electricity Prices policy really effective?--- Evidence based on the analysis of synthetic control method," Energy, Elsevier, vol. 163(C), pages 734-750.
    2. Safarzadeh, Soroush & Rasti-Barzoki, Morteza, 2019. "A game theoretic approach for pricing policies in a duopolistic supply chain considering energy productivity, industrial rebound effect, and government policies," Energy, Elsevier, vol. 167(C), pages 92-105.

  20. Ling-Yun He & Bingdong Hou & Hua Liao, 2018. "Rural energy policy in China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 10(2), pages 224-240, May.

    Cited by:

    1. Xuechao Xia & Hui Sun & Zedong Yang & Weipeng Yuan & Dianyuan Ma, 2022. "Decoupling Analysis of Rural Population Change and Rural Electricity Consumption Change in China," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    2. Sun, Dingqiang & Ge, Yang & Zhou, Yingheng, 2019. "Punishing and rewarding: How do policy measures affect crop straw use by farmers? An empirical analysis of Jiangsu Province of China," Energy Policy, Elsevier, vol. 134(C).
    3. Rauf, Abdul & Zhang, Jin & Li, Jinkai & Amin, Waqas, 2018. "Structural changes, energy consumption and carbon emissions in China: Empirical evidence from ARDL bound testing model," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 194-206.
    4. Ma, Wanglin & Zheng, Hongyun & Gong, Binlei, 2022. "Rural income growth, ethnic differences, and household cooking fuel choice: Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    5. Ma, Wanglin & Zheng, Hongyun & Gong, Binlei, 2021. "Household Energy Choice for Cooking: Do Rural Income Growth and Ethnic Difference Play a Role?," 2021 Conference, August 17-31, 2021, Virtual 314990, International Association of Agricultural Economists.
    6. Ma, Shaoyue & Man, Hecheng & Li, Xiao & Xu, Xiangbo & Sun, Mingxing & Xie, Minghui & Zhang, Linxiu, 2023. "How nonfarm employment drives the households’ energy transition: Evidence from rural China," Energy, Elsevier, vol. 267(C).
    7. Addai, Bismark & Tang, Wenjin & Twumasi, Martinson Ankrah & Asante, Dennis & Agyeman, Annette Serwaa, 2022. "Access to financial services and lighting energy consumption: Empirical evidence from rural Ghana," Energy, Elsevier, vol. 253(C).
    8. Ma, Wanglin & Zhou, Xiaoshi & Renwick, Alan, 2019. "Impact of off-farm income on household energy expenditures in China: Implications for rural energy transition," Energy Policy, Elsevier, vol. 127(C), pages 248-258.
    9. Hou, Bingdong & Wu, Jingwen & Mi, Zhifu & Ma, Chunbo & Shi, Xunpeng & Liao, Hua, 2022. "Cooking fuel types and the health effects: A field study in China," Energy Policy, Elsevier, vol. 167(C).

  21. Yi-Ming Wei & Rong Han & Qiao-Mei Liang & Bi-Ying Yu & Yun-Fei Yao & Mei-Mei Xue & Kun Zhang & Li-Jing Liu & Juan Peng & Pu Yang & Zhi-Fu Mi & Yun-Fei Du & Ce Wang & Jun-Jie Chang & Qian-Ru Yang & Zil, 2018. "An integrated assessment of INDCs under Shared Socioeconomic Pathways: an implementation of C3IAM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 585-618, June.

    Cited by:

    1. Dan Wang & Juheng Yang, 2022. "Carbon Neutrality Strategies for Chinese International Oil Company Based on the Rapid Development of Global Carbon Market," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    2. Chen, Xiaotong & Yang, Fang & Zhang, Shining & Zakeri, Behnam & Chen, Xing & Liu, Changyi & Hou, Fangxin, 2021. "Regional emission pathways, energy transition paths and cost analysis under various effort-sharing approaches for meeting Paris Agreement goals," Energy, Elsevier, vol. 232(C).
    3. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-cui & Wang, Jin-Wei, 2021. "Observing technology reserves of carbon capture and storage via patent data: Paving the way for carbon neutral," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    4. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    5. Lili Sun & Huijuan Cui & Quansheng Ge, 2021. "Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries," Energies, MDPI, vol. 14(17), pages 1-21, September.
    6. Tang, Bao-Jun & Wang, Xiang-Yu & Wei, Yi-Ming, 2019. "Quantities versus prices for best social welfare in carbon reduction: A literature review," Applied Energy, Elsevier, vol. 233, pages 554-564.
    7. Tang, Bao-Jun & Guo, Yang-Yang & Yu, Biying & Harvey, L.D. Danny, 2021. "Pathways for decarbonizing China’s building sector under global warming thresholds," Applied Energy, Elsevier, vol. 298(C).
    8. Wenwen Tang & Lihan Cui & Sheng Zheng & Wei Hu, 2022. "Multi-Scenario Simulation of Land Use Carbon Emissions from Energy Consumption in Shenzhen, China," Land, MDPI, vol. 11(10), pages 1-16, September.
    9. Jin, Gui & Shi, Xin & Zhang, Lei & Hu, Shougeng, 2020. "Measuring the SCCs of different Chinese regions under future scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    10. Changyi Liu & Xueli Shi & Guoquan Hu & Qiufeng Liu & Yunwei Dai & Wenyan Zhou & Chao Wei & Yunfei Cao, 2019. "A simple earth system model for C3IAM: based on BCC_CSM1.1 and CMIP5 simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1311-1325, December.
    11. Yiwei Lian & Yang Bai & Zhongde Huang & Maroof Ali & Jie Wang & Haoran Chen, 2024. "Spatio-Temporal Changes and Habitats of Rare and Endangered Species in Yunnan Province Based on MaxEnt Model," Land, MDPI, vol. 13(2), pages 1-19, February.
    12. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Liu, Li-Jing & Zhang, Yu-Fei, 2023. "Improving the regional deployment of carbon mitigation efforts by incorporating air-quality co-benefits: A multi-provincial analysis of China," Ecological Economics, Elsevier, vol. 204(PA).
    13. Tang, Bao-Jun & Li, Xiao-Yi & Yu, Biying & Wei, Yi-Ming, 2019. "Sustainable development pathway for intercity passenger transport: A case study of China," Applied Energy, Elsevier, vol. 254(C).
    14. Min Zhang & Yan Qiu & Chunling Li & Tao Cui & Mingxing Yang & Jun Yan & Wu Yang, 2023. "A Habitable Earth and Carbon Neutrality: Mission and Challenges Facing Resources and the Environment in China—An Overview," IJERPH, MDPI, vol. 20(2), pages 1-35, January.
    15. Liu, Li-Jing & Yao, Yun-Fei & Liang, Qiao-Mei & Qian, Xiang-Yan & Xu, Chun-Lei & Wei, Si-Yi & Creutzig, Felix & Wei, Yi-Ming, 2021. "Combining economic recovery with climate change mitigation: A global evaluation of financial instruments," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 438-453.
    16. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    17. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    18. Jing-Ming Chen & Biying Yu & Yi-Ming Wei, 2019. "CO2 emissions accounting for the chemical industry: an empirical analysis for China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1327-1343, December.
    19. Wu, Wei & Zhang, Tingting & Xie, Xiaomin & Huang, Zhen, 2021. "Regional low carbon development pathways for the Yangtze River Delta region in China," Energy Policy, Elsevier, vol. 151(C).
    20. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Dong, Kangyin & Liu, Li-Jing, 2022. "The cost-benefit comparisons of China's and India's NDCs based on carbon marginal abatement cost curves," Energy Economics, Elsevier, vol. 109(C).
    21. Cai, Liya & Luo, Ji & Wang, Minghui & Guo, Jianfeng & Duan, Jinglin & Li, Jingtao & Li, Shuo & Liu, Liting & Ren, Dangpei, 2023. "Pathways for municipalities to achieve carbon emission peak and carbon neutrality: A study based on the LEAP model," Energy, Elsevier, vol. 262(PB).
    22. Liu, Li-Jing & Creutzig, Felix & Yao, Yun-Fei & Wei, Yi-Ming & Liang, Qiao-Mei, 2020. "Environmental and economic impacts of trade barriers: The example of China–US trade friction," Resource and Energy Economics, Elsevier, vol. 59(C).

  22. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.

    Cited by:

    1. Ma, Qiang & Murshed, Muntasir & Khan, Zeeshan, 2021. "The nexuses between energy investments, technological innovations, emission taxes, and carbon emissions in China," Energy Policy, Elsevier, vol. 155(C).
    2. Cheng, Louis T.W. & Shen, Jianfu & Wojewodzki, Michal, 2023. "A cross-country analysis of corporate carbon performance: An international investment perspective," Research in International Business and Finance, Elsevier, vol. 64(C).
    3. Meng Lingyan & Ze Zhao & Haider Ali Malik & Asif Razzaq & Hui An & Marria Hassan, 2022. "Asymmetric impact of fiscal decentralization and environmental innovation on carbon emissions: Evidence from highly decentralized countries," Energy & Environment, , vol. 33(4), pages 752-782, June.
    4. Vo, D.H. & Nguyen, H.M. & Vo, A.T. & McAleer, M.J., 2019. "CO2 Emissions, Energy Consumption and Economic Growth," Econometric Institute Research Papers EI2019-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Bashir, Muhammad Adnan & Dengfeng, Zhao & Amin, Fouzia & Mentel, Grzegorz & Raza, Syed Ali & Bashir, Muhammad Farhan, 2023. "Transition to greener electricity and resource use impact on environmental quality: Policy based study from OECD countries," Utilities Policy, Elsevier, vol. 81(C).
    6. Danish & Recep Ulucak, 2020. "The pathway toward pollution mitigation: Does institutional quality make a difference?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3571-3583, December.
    7. Shutaro Takeda & Alexander Ryota Keeley & Shigeki Sakurai & Shunsuke Managi & Catherine Benoît Norris, 2019. "Are Renewables as Friendly to Humans as to the Environment?: A Social Life Cycle Assessment of Renewable Electricity," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    8. Zhao, Jun & Dong, Kangyin & Dong, Xiucheng & Shahbaz, Muhammad & Kyriakou, Ioannis, 2022. "Is green growth affected by financial risks? New global evidence from asymmetric and heterogeneous analysis," Energy Economics, Elsevier, vol. 113(C).
    9. Abbasi, Kashif Raza & Hussain, Khadim & Redulescu, Magdalena & Ozturk, Ilhan, 2021. "Does natural resources depletion and economic growth achieve the carbon neutrality target of the UK? A way forward towards sustainable development," Resources Policy, Elsevier, vol. 74(C).
    10. Stephen K. Dimnwobi & Chukwunonso Ekesiobi & Chekwube V. Madichie & Simplice A. Asongu, 2021. "Population Dynamics and Environmental Quality in Africa," Working Papers 21/047, European Xtramile Centre of African Studies (EXCAS).
    11. Ade Banani & Bambang Sunarko, 2022. "Nexus between Green Finance, Creativity, Energy Accounting and Financial Performance: Banks Sustainability Analysis from Developing Country," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 447-455, November.
    12. Yechennan Peng & Hossein Azadi & Liang (Emlyn) Yang & Jürgen Scheffran & Ping Jiang, 2022. "Assessing the Siting Potential of Low-Carbon Energy Power Plants in the Yangtze River Delta: A GIS-Based Approach," Energies, MDPI, vol. 15(6), pages 1-20, March.
    13. Alexandra Horobet & Oana Cristina Popovici & Emanuela Zlatea & Lucian Belascu & Dan Gabriel Dumitrescu & Stefania Cristina Curea, 2021. "Long-Run Dynamics of Gas Emissions, Economic Growth, and Low-Carbon Energy in the European Union: The Fostering Effect of FDI and Trade," Energies, MDPI, vol. 14(10), pages 1-30, May.
    14. Wang, Zhuo & Yen-Ku, Kuo & Li, Zeyun & An, Nguyen Binh & Abdul-Samad, Zulkiflee, 2022. "The transition of renewable energy and ecological sustainability through environmental policy stringency: Estimations from advance panel estimators," Renewable Energy, Elsevier, vol. 188(C), pages 70-80.
    15. Mohd Shahidan Shaari & Noorazeela Zainol Abidin & Zulkefly Abdul Karim, 2020. "The Impact of Renewable Energy Consumption and Economic Growth on CO2 Emissions: New Evidence using Panel ARDL Study of Selected Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 617-623.
    16. Huo, Chunhui & Hameed, Javaria & Cong, Phan The & Nassani, Abdelmohsen A. & Haffar, Mohamed, 2022. "Curing the resource curse with the adoption of resource-rich energy in MINT countries: An application of quantile regression," Resources Policy, Elsevier, vol. 79(C).
    17. Yang, Mian & Wang, En-Ze & Hou, Yaru, 2021. "The relationship between manufacturing growth and CO2 emissions: Does renewable energy consumption matter?," Energy, Elsevier, vol. 232(C).
    18. Shahbaz, Muhammad & Abbas Rizvi, Syed Kumail & Dong, Kangyin & Vo, Xuan Vinh, 2022. "Fiscal decentralization as new determinant of renewable energy demand in China: The role of income inequality and urbanization," Renewable Energy, Elsevier, vol. 187(C), pages 68-80.
    19. Wang, Chen & Raza, Syed Ali & Adebayo, Tomiwa Sunday & Yi, Sun & Shah, Muhammad Ibrahim, 2023. "The roles of hydro, nuclear and biomass energy towards carbon neutrality target in China: A policy-based analysis," Energy, Elsevier, vol. 262(PA).
    20. Jean Pierre Namahoro & Qiaosheng Wu & Haijun Xiao & Na Zhou, 2021. "The Impact of Renewable Energy, Economic and Population Growth on CO 2 Emissions in the East African Region: Evidence from Common Correlated Effect Means Group and Asymmetric Analysis," Energies, MDPI, vol. 14(2), pages 1-21, January.
    21. Dobdinga Cletus Fonchamnyo & Ongo Nkoa Bruno Emmanuel & Gildas Dohba Dinga, 2021. "The effects of trade, foreign direct investment, and economic growth on environmental quality and overshoot: a dynamic common correlation effects approach," SN Business & Economics, Springer, vol. 1(10), pages 1-27, October.
    22. Arifur Rahman Atiqur Rahman & Mohd Shahidan Shaari & Faiz Masnan & Miguel Angel Esquivias, 2022. "The Impacts of Energy Use, Tourism and Foreign Workers on CO 2 Emissions in Malaysia," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
    23. Maximillian M. J. Kapa & Agus A. Nalle & Paul G. Tamelan & Worakamol Wisetsri, 2022. "The Impact of Green Finance, Agriculture Growth and Creativity on Carbon Emissions of High Carbon Emissions Producing Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 432-440, September.
    24. Eun Jeong Heo & Jinhyuk Lee, 2023. "Allocating $$\hbox {CO}_2$$ CO 2 emissions: a dynamic claims problem," Review of Economic Design, Springer;Society for Economic Design, vol. 27(1), pages 163-186, February.
    25. Fu Hua & Majed Alharthi & Weihua Yin & Muhammad Saeed & Ishtiaq Ahmad & Syed Ahtsham Ali, 2022. "Carbon Emissions and Socioeconomic Drivers of Climate Change: Empirical Evidence from the Logarithmic Mean Divisia Index (LMDI) Base Model for China," Sustainability, MDPI, vol. 14(4), pages 1-12, February.
    26. N.M. Odhiambo & T. Saungweme, 2021. "Does International Tourism Spur International Trade in SSA Countries? A Dynamic Panel Data Analysis," Working Papers AESRI-2021-08, African Economic and Social Research Institute (AESRI), revised Nov 2021.
    27. Hang Jiang & Peng Jiang & Peiyi Kong & Yi-Chung Hu & Cheng-Wen Lee, 2020. "A Predictive Analysis of China’s CO 2 Emissions and OFDI with a Nonlinear Fractional-Order Grey Multivariable Model," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    28. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2020. "Would environmental regulation improve the greenhouse gas benefits of natural gas use? A Chinese case study," Energy Economics, Elsevier, vol. 87(C).
    29. Junsong Jia & Jing Lei & Chundi Chen & Xu Song & Yexi Zhong, 2021. "Contribution of Renewable Energy Consumption to CO 2 Emission Mitigation: A Comparative Analysis from a Global Geographic Perspective," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    30. Bano, Sadia & Liu, Lu & Khan, Anwar, 2022. "Dynamic influence of aging, industrial innovations, and ICT on tourism development and renewable energy consumption in BRICS economies," Renewable Energy, Elsevier, vol. 192(C), pages 431-442.
    31. Suyi Kim, 2022. "The Effects of Information and Communication Technology, Economic Growth, Trade Openness, and Renewable Energy on CO 2 Emissions in OECD Countries," Energies, MDPI, vol. 15(7), pages 1-15, March.
    32. Hoang, Thi Hong Van & Shahzad, Syed Jawad Hussain & Czudaj, Robert L., 2020. "Renewable energy consumption and industrial production: A disaggregated time-frequency analysis for the U.S," Energy Economics, Elsevier, vol. 85(C).
    33. Badeeb, Ramez Abubakr & Wang, Bo & Zhao, Jun & Khan, Zeeshan & Uktamov, Khusniddin Fakhriddinovich & Zhang, Changyong, 2023. "Natural resources extraction and financial inclusion: Linear and non-linear effect of natural resources on financial sector," Resources Policy, Elsevier, vol. 85(PA).
    34. Ziaei, Sayyed Mahdi, 2022. "The impacts of household social benefits, public expenditure on labour markets, and household financial assets on the renewable energy sector," Renewable Energy, Elsevier, vol. 181(C), pages 51-58.
    35. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    36. Zhao, Jun & Dong, Kangyin & Dong, Xiucheng & Shahbaz, Muhammad, 2022. "How renewable energy alleviate energy poverty? A global analysis," Renewable Energy, Elsevier, vol. 186(C), pages 299-311.
    37. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2022. "Renewable energy and CO2 emissions: New evidence with the panel threshold model," Renewable Energy, Elsevier, vol. 194(C), pages 117-128.
    38. Gyimah, Justice & Yao, Xilong & Tachega, Mark Awe & Sam Hayford, Isaac & Opoku-Mensah, Evans, 2022. "Renewable energy consumption and economic growth: New evidence from Ghana," Energy, Elsevier, vol. 248(C).
    39. Wang, Jianda & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Decoupling and decomposition analysis of investments and CO2 emissions in information and communication technology sector," Applied Energy, Elsevier, vol. 302(C).
    40. Moataz Elshimy & Khadiga M. El-Aasar, 2020. "Carbon footprint, renewable energy, non-renewable energy, and livestock: testing the environmental Kuznets curve hypothesis for the Arab world," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6985-7012, October.
    41. Zebo Kuldasheva & Raufhon Salahodjaev, 2023. "Renewable Energy and CO2 Emissions: Evidence from Rapidly Urbanizing Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(2), pages 1077-1090, June.
    42. Xiang, Yitian & Cui, Haotian & Bi, Yunxiao, 2023. "The impact and channel effects of banking competition and government intervention on carbon emissions: Evidence from China," Energy Policy, Elsevier, vol. 175(C).
    43. Zakarie Abdi Warsame & Maria Mohamed Ali & Liban Bile Mohamed & Farhia Hassan Mohamed, 2023. "The Causal Relation between Energy Consumption, Carbon Dioxide Emissions, and Macroeconomic Variables in Somalia," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 102-110, May.
    44. Kangyin Dong & Yalin Han & Yue Dou & Muhammad Shahbaz, 2022. "Moving toward carbon neutrality: Assessing natural gas import security and its impact on CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 751-770, August.
    45. Titin Agustin Nengsih & Muhamad Abduh & Urwawuska Ladini & Fadhlul mubarak, 2023. "The Impact of Islamic Financial Development, GDP, and Population on Environmental Quality in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 7-13, January.
    46. Acheampong, Alex O. & Amponsah, Mary & Boateng, Elliot, 2020. "Does financial development mitigate carbon emissions? Evidence from heterogeneous financial economies," Energy Economics, Elsevier, vol. 88(C).
    47. Zhao, Jun & Shahbaz, Muhammad & Dong, Xiucheng & Dong, Kangyin, 2021. "How does financial risk affect global CO2 emissions? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    48. Siddik, Abu Bakkar & Khan, Samiha & Khan, Uzma & Yong, Li & Murshed, Muntasir, 2023. "The role of renewable energy finance in achieving low-carbon growth: contextual evidence from leading renewable energy-investing countries," Energy, Elsevier, vol. 270(C).
    49. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    50. Dong, Kangyin & Ren, Xiaohang & Zhao, Jun, 2021. "How does low-carbon energy transition alleviate energy poverty in China? A nonparametric panel causality analysis," Energy Economics, Elsevier, vol. 103(C).
    51. Bingjie Xu & Ruoyu Zhong & Hui Qiao, 2020. "The impact of biofuel consumption on CO2 emissions: A panel data analysis for seven selected G20 countries," Energy & Environment, , vol. 31(8), pages 1498-1514, December.
    52. Acheampong, Alex O. & Dzator, Janet & Savage, David A., 2021. "Renewable energy, CO2 emissions and economic growth in sub-Saharan Africa: Does institutional quality matter?," Journal of Policy Modeling, Elsevier, vol. 43(5), pages 1070-1093.
    53. Dong, Kangyin & Shahbaz, Muhammad & Zhao, Jun, 2022. "How do pollution fees affect environmental quality in China?," Energy Policy, Elsevier, vol. 160(C).
    54. Le, Thanh Ha, 2022. "Connectedness between nonrenewable and renewable energy consumption, economic growth and CO2 emission in Vietnam: New evidence from a wavelet analysis," Renewable Energy, Elsevier, vol. 195(C), pages 442-454.
    55. Acheampong, Alex O. & Dzator, Janet & Dzator, Michael & Salim, Ruhul, 2022. "Unveiling the effect of transport infrastructure and technological innovation on economic growth, energy consumption and CO2 emissions," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    56. Bashir, Muhammad Farhan & Pan, Yanchun & Shahbaz, Muhammad & Ghosh, Sudeshna, 2023. "How energy transition and environmental innovation ensure environmental sustainability? Contextual evidence from Top-10 manufacturing countries," Renewable Energy, Elsevier, vol. 204(C), pages 697-709.
    57. Su, Min & Wang, Qiang & Li, Rongrong & Wang, Lili, 2022. "Per capita renewable energy consumption in 116 countries: The effects of urbanization, industrialization, GDP, aging, and trade openness," Energy, Elsevier, vol. 254(PB).
    58. Montassar Kahia & Anis Omri & Bilel Jarraya, 2021. "Green Energy, Economic Growth and Environmental Quality Nexus in Saudi Arabia," Sustainability, MDPI, vol. 13(3), pages 1-13, January.
    59. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    60. Dervis Kirikkaleli & Hasan Güngör & Tomiwa Sunday Adebayo, 2022. "Consumption‐based carbon emissions, renewable energy consumption, financial development and economic growth in Chile," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1123-1137, March.
    61. Li, Zeyun & Qadus, Abdul & Maneengam, Apichit & Mabrouk, Fatma & Shahid, Muhammad Sadiq & Timoshin, Anton, 2022. "Technological innovation, crude oil volatility, and renewable energy dimensions in N11 countries: Analysis based on advance panel estimation techniques," Renewable Energy, Elsevier, vol. 191(C), pages 204-212.
    62. Montassar Kahia & Anis Omri & Bilel Jarraya, 2020. "Does Green Energy Complement Economic Growth for Achieving Environmental Sustainability? Evidence from Saudi Arabia," Sustainability, MDPI, vol. 13(1), pages 1-12, December.
    63. Armeanu, Daniel Stefan & Joldes, Camelia Catalina & Gherghina, Stefan Cristian & Andrei, Jean Vasile, 2021. "Understanding the multidimensional linkages among renewable energy, pollution, economic growth and urbanization in contemporary economies: Quantitative assessments across different income countries’ g," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    64. Eldowma, Ibrahim Ahmed & Zhang, Guoxing & Su, Bin, 2023. "The nexus between electricity consumption, carbon dioxide emissions, and economic growth in Sudan (1971–2019)," Energy Policy, Elsevier, vol. 176(C).
    65. Pablo Ponce & Cristiana Oliveira & Viviana Álvarez & María de la Cruz del Río-Rama, 2020. "The Liberalization of the Internal Energy Market in the European Union: Evidence of Its Influence on Reducing Environmental Pollution," Energies, MDPI, vol. 13(22), pages 1-17, November.
    66. Dong, Jiajia & Dou, Yue & Jiang, Qingzhe & Zhao, Jun, 2022. "Can financial inclusion facilitate carbon neutrality in China? The role of energy efficiency," Energy, Elsevier, vol. 251(C).
    67. Zhao, Bingyu & Yang, Wanping, 2020. "Does financial development influence CO2 emissions? A Chinese province-level study," Energy, Elsevier, vol. 200(C).
    68. Muhammad Wasif Zafar & Asif Saeed & Syed Anees Haider Zaidi & Abdul Waheed, 2021. "The linkages among natural resources, renewable energy consumption, and environmental quality: A path toward sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 353-362, March.
    69. Raad Al-Tal & Muntasir Murshed & Paiman Ahmad & Abdelrahman J. K. Alfar & Mohga Bassim & Mohamed Elheddad & Mira Nurmakhanova & Haider Mahmood, 2021. "The Non-Linear Effects of Energy Efficiency Gains on the Incidence of Energy Poverty," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    70. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    71. Claudiu Tiberiu Albulescu & Maria-Elena Boatca-Barabas & Andra Diaconescu, 2021. "The asymmetric effect of environmental policy stringency on CO2 emissions in OECD countries," Working Papers hal-03303096, HAL.
    72. Raufhon Salahodjaev & Kongratbay Sharipov & Nizomiddin Rakhmanov & Dilshod Khabirov, 2022. "Tourism, renewable energy and CO2 emissions: evidence from Europe and Central Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 13282-13293, November.
    73. Lu, Zhou & Gozgor, Giray & Mahalik, Mantu Kumar & Padhan, Hemachandra & Yan, Cheng, 2022. "Welfare gains from international trade and renewable energy demand: Evidence from the OECD countries," Energy Economics, Elsevier, vol. 112(C).
    74. Vo, Duc Hong & Vo, Anh The & Ho, Chi Minh & Nguyen, Ha Minh, 2020. "The role of renewable energy, alternative and nuclear energy in mitigating carbon emissions in the CPTPP countries," Renewable Energy, Elsevier, vol. 161(C), pages 278-292.
    75. Tomiwa Sunday Adebayo & Dervis Kirikkaleli, 2021. "Impact of renewable energy consumption, globalization, and technological innovation on environmental degradation in Japan: application of wavelet tools," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16057-16082, November.
    76. Hikaru Komatsu & Shin-Pei Fu & Meng-Hui Lin & Yi-Huan Hsieh & Jeremy Rappleye & Iveta Silova, 2022. "Measuring the Transformation of University Students’ Self-Construal for Greater Environmental Sustainability," SAGE Open, , vol. 12(1), pages 21582440221, February.
    77. Namahoro, J.P. & Wu, Q. & Zhou, N. & Xue, S., 2021. "Impact of energy intensity, renewable energy, and economic growth on CO2 emissions: Evidence from Africa across regions and income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    78. Cheng, Cheng & Dong, Kangyin & Wang, Zhen & Liu, Shulin & Jurasz, Jakub & Zhang, Haoran, 2023. "Rethinking the evaluation of solar photovoltaic projects under YieldCo mode: A real option perspective," Applied Energy, Elsevier, vol. 336(C).
    79. Perez, Fernando & Al Ghafri, Saif Z.S. & Gallagher, Liam & Siahvashi, Arman & Ryu, Yonghee & Kim, Sungwoo & Kim, Sung Gyu & Johns, Michael L. & May, Eric F., 2021. "Measurements of boil-off gas and stratification in cryogenic liquid nitrogen with implications for the storage and transport of liquefied natural gas," Energy, Elsevier, vol. 222(C).
    80. Su, Chi-Wei & Pang, Li-Dong & Tao, Ran & Shao, Xuefeng & Umar, Muhammad, 2022. "Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions?," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    81. Belaïd, Fateh & Zrelli, Maha Harbaoui, 2019. "Renewable and non-renewable electricity consumption, environmental degradation and economic development: Evidence from Mediterranean countries," Energy Policy, Elsevier, vol. 133(C).
    82. Nguyen, Tran Thai Ha & Tu, Yu-Te & Diep, Gia Luat & Tran, Trung Kien & Tien, Nguyen Hoang & Chien, FengSheng, 2023. "Impact of natural resources extraction and energy consumption on the environmental sustainability in ASEAN countries," Resources Policy, Elsevier, vol. 85(PA).
    83. Islam, Md. Monirul & Sohag, Kazi & Hammoudeh, Shawkat & Mariev, Oleg & Samargandi, Nahla, 2022. "Minerals import demands and clean energy transitions: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
    84. Radmehr, Riza & Henneberry, Shida Rastegari & Shayanmehr, Samira, 2021. "Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 13-27.
    85. Larry Hughes & Moniek Jong & Zach Thorne, 2021. "(De)coupling and (De)carbonizing in the economies and energy systems of the G20," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5614-5639, April.
    86. Yao Hongxing & Olivier Joseph Abban & Alex Dankyi Boadi, 2021. "Foreign aid and economic growth: Do energy consumption, trade openness and CO2 emissions matter? A DSUR heterogeneous evidence from Africa’s trading blocs," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-25, June.
    87. Acheampong, Alex O., 2019. "Modelling for insight: Does financial development improve environmental quality?," Energy Economics, Elsevier, vol. 83(C), pages 156-179.
    88. Le Thanh Ha & Nguyen Thi Thanh Huyen, 2022. "Dynamic Connectedness between Renewable and Nonrenewable Energy Consumptions, Economic Growth and Carbon Dioxide Emissions in Vietnam: Extension of the TVP-VAR Joint Connected Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 361-372, May.
    89. Liang, Yunbao & Galiano, Jesus Cantero & Zhou, Hongxia, 2023. "The environmental impact of stock market capitalization and energy transition: Natural resource dynamics and international trade," Utilities Policy, Elsevier, vol. 82(C).
    90. Emad Kazemzadeh & José Alberto Fuinhas & Narges Salehnia & Fariba Osmani, 2023. "The effect of economic complexity, fertility rate, and information and communication technology on ecological footprint in the emerging economies: a two-step stirpat model and panel quantile regressio," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 737-763, February.
    91. Qiao, Hui & Chen, Siyu & Dong, Xiucheng & Dong, Kangyin, 2019. "Has China's coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity," Energy Economics, Elsevier, vol. 84(C).
    92. Dinh Cong Hoang & Dinh Cong Tuan, 2023. "Evaluating the Role of Green Financing, International Trade and Alternative Energies on Environmental Performance in Case of Chinese Provinces: Application of Quantile Regression Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 500-508, March.
    93. Yue Dou & Muhammad Shahbaz & Kangyin Dong & Xiucheng Dong, 2022. "How natural disasters affect carbon emissions: the global case," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(3), pages 1875-1901, September.
    94. Liu, Meihan & Baisheng, Shi & Alharthi, Majed & Hassan, Muhammad Shahid & Hanif, Imran, 2023. "The role of natural resources, clean energy and technology in mitigating carbon emissions in top populated countries," Resources Policy, Elsevier, vol. 83(C).
    95. Hailiang, Zeng & Chau, Ka Yin & Waqas, Muhammad, 2023. "Does green finance and renewable energy promote tourism for sustainable development: Empirical evidence from China," Renewable Energy, Elsevier, vol. 207(C), pages 660-671.
    96. Daniel Balsalobre‐Lorente & Oana M. Driha & George Halkos & Shekhar Mishra, 2022. "Influence of growth and urbanization on CO2 emissions: The moderating effect of foreign direct investment on energy use in BRICS," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 227-240, February.
    97. Tiwari, Sunil & Si Mohammed, Kamel & Guesmi, Khaled, 2023. "A way forward to end energy poverty in China: Role of carbon-cutting targets and net-zero commitments," Energy Policy, Elsevier, vol. 180(C).
    98. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    99. Jiang, Hongdian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2020. "What drives China's natural gas consumption? Analysis of national and regional estimates," Energy Economics, Elsevier, vol. 87(C).
    100. Luiza Ossowska & Dorota Janiszewska & Natalia Bartkowiak-Bakun & Grzegorz Kwiatkowski, 2020. "Energy Consumption Versus Greenhouse Gas Emissions in EU," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 185-198.
    101. Škare, Marinko & Porada-Rochoń, Małgorzata, 2023. "Are we making progress on decarbonization? A panel heterogeneous study of the long-run relationship in selected economies," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    102. Wang, Jun & Ghosh, Sudeshna & Olayinka, Olohunlana Aminat & Doğan, Buhari & Shah, Muhammad Ibrahim & Zhong, Kaiyang, 2022. "Achieving energy security amidst the world uncertainty in newly industrialized economies: The role of technological advancement," Energy, Elsevier, vol. 261(PB).
    103. Clement Olalekan Olaniyi & Titus Ayobami Ojeyinka & Xuan Vinh Vo & Mamdouh Abdulaziz Saleh Al‐Faryan, 2023. "Do business strategies vary across firms in the banking industry? New perspectives from the bank size–profitability nexus," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(1), pages 525-544, January.
    104. Ke Liu & Mingxue Zhao & Xinyue Xie & Qian Zhou, 2022. "Study on the Decoupling Relationship and Rebound Effect between Economic Growth and Carbon Emissions in Central China," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    105. Sharif, Arshian & Brahim, Mariem & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "Analysis of the spillover effects between green economy, clean and dirty cryptocurrencies," Energy Economics, Elsevier, vol. 120(C).
    106. Alvarado, Rafael & Tillaguango, Brayan & Murshed, Muntasir & Ochoa-Moreno, Santiago & Rehman, Abdul & Işık, Cem & Alvarado-Espejo, Johana, 2022. "Impact of the informal economy on the ecological footprint: The role of urban concentration and globalization," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 750-767.
    107. Sharif, Arshian & Iqbal Godil, Danish & Xu, Bingjie & Sinha, Avik & Abdul Rehman Khan, Syed & Jermsittiparsert, Kittisak, 2020. "Revisiting the Role of Tourism and Globalization in Environmental Degradation in China: Fresh Insights from the Quantile ARDL Approach," MPRA Paper 101156, University Library of Munich, Germany, revised 2020.
    108. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2022. "The relationship between carbon-intensive fuel and renewable energy stock prices under the emissions trading system," Energy Economics, Elsevier, vol. 114(C).
    109. YuSheng Kong & Rabnawaz Khan, 2019. "To examine environmental pollution by economic growth and their impact in an environmental Kuznets curve (EKC) among developed and developing countries," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-23, March.
    110. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin & Jiang, Hongdian, 2022. "How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China," Energy Economics, Elsevier, vol. 105(C).
    111. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.
    112. Zeng, Chen & Stringer, Lindsay C. & Lv, Tianyu, 2021. "The spatial spillover effect of fossil fuel energy trade on CO2 emissions," Energy, Elsevier, vol. 223(C).
    113. José Carlos Araújo Amarante & Cássio da Nóbrega Besarria & Helson Gomes de Souza & Otoniel Rodrigues dos Anjos Junior, 2021. "The relationship between economic growth, renewable and nonrenewable energy use and CO2 emissions: empirical evidences for Brazil," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 411-431, June.
    114. Liu, Xuemei & Yuan, Shuhan & Yu, Haoran & Liu, Zheng, 2023. "How ecological policy stringency moderates the influence of industrial innovation on environmental sustainability: The role of renewable energy transition in BRICST countries," Renewable Energy, Elsevier, vol. 207(C), pages 194-204.
    115. Sun, Huaping & Samuel, Clottey Attuquaye & Kofi Amissah, Joshua Clifford & Taghizadeh-Hesary, Farhad & Mensah, Isaac Adjei, 2020. "Non-linear nexus between CO2 emissions and economic growth: A comparison of OECD and B&R countries," Energy, Elsevier, vol. 212(C).
    116. Awan, Ashar & Abbasi, Kashif Raza & Rej, Soumen & Bandyopadhyay, Arunava & Lv, Kangjuan, 2022. "The impact of renewable energy, internet use and foreign direct investment on carbon dioxide emissions: A method of moments quantile analysis," Renewable Energy, Elsevier, vol. 189(C), pages 454-466.
    117. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    118. Ramzan, Muhammad & Abbasi, Kashif Raza & Salman, Asma & Dagar, Vishal & Alvarado, Rafael & Kagzi, Muneza, 2023. "Towards the dream of go green: An empirical importance of green innovation and financial depth for environmental neutrality in world's top 10 greenest economies," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    119. Zhimin Peng & Qunqi Wu, 2020. "Evaluation of the relationship between energy consumption, economic growth, and CO2 emissions in China’ transport sector: the FMOLS and VECM approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6537-6561, October.
    120. Bo Sui & Chun-Ping Chang & Yin Chu, 2021. "Political Stability: an Impetus for Spatial Environmental Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 387-415, June.
    121. Sun, Chuanwang & Khan, Anwar & Liu, Yongzhe & Lei, Ni, 2022. "An analysis of the impact of fiscal and monetary policy fluctuations on the disaggregated level renewable energy generation in the G7 countries," Renewable Energy, Elsevier, vol. 189(C), pages 1154-1165.
    122. Rahman, Mohammad Mafizur & Alam, Khosrul, 2022. "Impact of industrialization and non-renewable energy on environmental pollution in Australia: Do renewable energy and financial development play a mitigating role?," Renewable Energy, Elsevier, vol. 195(C), pages 203-213.
    123. Hussain, Jamal & Khan, Anwar & Zhou, Kui, 2020. "The impact of natural resource depletion on energy use and CO2 emission in Belt & Road Initiative countries: A cross-country analysis," Energy, Elsevier, vol. 199(C).
    124. Liu, Xuyi & Kong, Hao & Zhang, Shun, 2021. "Can urbanization, renewable energy, and economic growth make environment more eco-friendly in Northeast Asia?," Renewable Energy, Elsevier, vol. 169(C), pages 23-33.
    125. Muntasir Murshed & Uzma Khan & Aarif Mohammad Khan & Ilhan Ozturk, 2023. "Can energy productivity gains harness the carbon dioxide‐inhibiting agenda of the Next 11 countries? Implications for achieving sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 307-320, February.
    126. Sun, Yunpeng & Anwar, Ahsan & Razzaq, Asif & Liang, Xueping & Siddique, Muhammad, 2022. "Asymmetric role of renewable energy, green innovation, and globalization in deriving environmental sustainability: Evidence from top-10 polluted countries," Renewable Energy, Elsevier, vol. 185(C), pages 280-290.
    127. Huang, Shi-Zheng, 2022. "The effect of natural resources and economic factors on energy transition: New evidence from China," Resources Policy, Elsevier, vol. 76(C).
    128. Anh The Vo & Duc Hong Vo & Quan Thai-Thuong Le, 2019. "CO 2 Emissions, Energy Consumption, and Economic Growth: New Evidence in the ASEAN Countries," JRFM, MDPI, vol. 12(3), pages 1-20, September.

  23. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.

    Cited by:

    1. Shahbaz, Muhammad & Shafiullah, Muhammad & Khalid, Usman & Song, Malin, 2020. "A nonparametric analysis of energy environmental Kuznets Curve in Chinese Provinces," Energy Economics, Elsevier, vol. 89(C).
    2. Xiao-Ying Dong & Qiying Ran & Yu Hao, 2019. "On the nonlinear relationship between energy consumption and economic development in China: new evidence from panel data threshold estimations," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1837-1857, July.
    3. Yu Hao & Zirui Huang & Haitao Wu, 2019. "Do Carbon Emissions and Economic Growth Decouple in China? An Empirical Analysis Based on Provincial Panel Data," Energies, MDPI, vol. 12(12), pages 1-15, June.
    4. Muhammad Shahbaz & Avik Sinha & Andreas Kontoleon, 2022. "Decomposing scale and technique effects of economic growth on energy consumption: Fresh evidence from developing economies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1848-1869, April.
    5. Chai, Jingxia & Wu, Haitao & Hao, Yu, 2022. "Planned economic growth and controlled energy demand: How do regional growth targets affect energy consumption in China?," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    6. Yuangang Li & Maohua Sun & Guanghui Yuan & Qi Zhou & Jinyue Liu, 2019. "Study on Development Sustainability of Atmospheric Environment in Northeast China by Rough Set and Entropy Weight Method," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    7. Xiaoying Xu & Xinxin Tian, 2023. "Dynamic Evolution and Trend Prediction in Coupling Coordination between Energy Consumption and Green Development in China," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    8. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    9. Hao, Yu & Zhang, Tianli & Jing, Leijie & Xiao, Linqi, 2019. "Would the decoupling of electricity occur along with economic growth? Empirical evidence from the panel data analysis for 100 Chinese cities," Energy, Elsevier, vol. 180(C), pages 615-625.
    10. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    11. Xu Liu & Jiang Lin & Junfeng Hu & Hongyou Lu & Jiaru Cai, 2019. "Economic Transition, Technology Change, and Energy Consumption in China: A Provincial-Level Analysis," Energies, MDPI, vol. 12(13), pages 1-16, July.
    12. Shahbaz, Muhammad & Sinha, Avik & Kontoleon, Andreas, 2020. "Decomposing Scale and Technique Effects of Economic Growth on Energy Consumption: Fresh Evidence in Developing Economies," MPRA Paper 102111, University Library of Munich, Germany, revised 27 Jul 2020.
    13. Yuehui Xia & Ting Zhang & Miaomiao Yu & Lingying Pan, 2020. "Regional Disparities and Transformation of Energy Consumption in China Based on a Hybrid Input-Output Analysis," Energies, MDPI, vol. 13(20), pages 1-27, October.
    14. Zheng, Shenglin & Yuan, Rong, 2023. "Sectoral convergence analysis of China's emissions intensity and its implications," Energy, Elsevier, vol. 262(PB).
    15. Yang, Xue & Xu, He & Su, Bin, 2022. "Factor decomposition for global and national aggregate energy intensity change during 2000–2014," Energy, Elsevier, vol. 254(PB).
    16. Ji, Shou-feng & Zhao, Dan & Luo, Rong-juan, 2019. "Evolutionary game analysis on local governments and manufacturers' behavioral strategies: Impact of phasing out subsidies for new energy vehicles," Energy, Elsevier, vol. 189(C).

  24. Dong, Kangyin & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "Does natural gas consumption mitigate CO2 emissions: Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 419-429.

    Cited by:

    1. René Augusto Marín-Leyva & América I. Zamora-Torres & Carlos Francisco Ortiz-Paniagua, 2022. "Economía, energía y calidad ambiental en APEC, 1990-2018," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 17(4), pages 1-19, Octubre -.
    2. Anh-Tu Nguyen & Shih-Hao Lu & Phuc Thanh Thien Nguyen, 2021. "Validating and Forecasting Carbon Emissions in the Framework of the Environmental Kuznets Curve: The Case of Vietnam," Energies, MDPI, vol. 14(11), pages 1-38, May.
    3. Bai, Rongjun & Liu, Yan, 2023. "Natural resources as a source of financing energy poverty reduction? Resources extraction perspective," Resources Policy, Elsevier, vol. 82(C).
    4. Mohammed Musah & Yusheng Kong & Isaac Adjei Mensah & Stephen Kwadwo Antwi & Mary Donkor, 2021. "The connection between urbanization and carbon emissions: a panel evidence from West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11525-11552, August.
    5. Chen, Xia & Rahaman, Md Atikur & Murshed, Muntasir & Mahmood, Haider & Hossain, Md Afzal, 2023. "Causality analysis of the impacts of petroleum use, economic growth, and technological innovation on carbon emissions in Bangladesh," Energy, Elsevier, vol. 267(C).
    6. Mark Awe Tachega & Xilong Yao & Yang Liu & Dulal Ahmed & Wilhermina Ackaah & Mohamed Gabir & Justice Gyimah, 2021. "Income Heterogeneity and the Environmental Kuznets Curve Turning Points: Evidence from Africa," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    7. Hyung-Seok Jeong & Ju-Hee Kim & Seung-Hoon Yoo, 2021. "South Korean Public Acceptance of the Fuel Transition from Coal to Natural Gas in Power Generation," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    8. Zhao, Jun & Dong, Kangyin & Dong, Xiucheng & Shahbaz, Muhammad & Kyriakou, Ioannis, 2022. "Is green growth affected by financial risks? New global evidence from asymmetric and heterogeneous analysis," Energy Economics, Elsevier, vol. 113(C).
    9. Bingjie Xu & Ruoyu Zhong & Yifeng Liu, 2019. "Comparison of CO 2 emissions reduction efficiency of household fuel consumption in China," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    10. Ruan, Shuai & Wan, Guofeng & Le, Xilin & Zhang, Shanshan & Yu, Chao, 2023. "Combining the role of the banking sector and natural resource utilization on green economic development: Evidence from China," Resources Policy, Elsevier, vol. 83(C).
    11. Mohamed Ouédraogo & Daiyan Peng & Xi Chen & Shujahat Haider Hashmi & Mamoudou Ibrahima Sall, 2021. "Dynamic Effect of Oil Resources on Environmental Quality: Testing the Environmental Kuznets Curve Hypothesis for Selected African Countries," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    12. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    13. Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
    14. Liu Sicen & Anwar Khan & Allauddin Kakar, 2022. "The Role of Disaggregated Level Natural Resources Rents in Economic Growth and Environmental Degradation of BRICS Economies," Biophysical Economics and Resource Quality, Springer, vol. 7(3), pages 1-14, September.
    15. Muntasir Murshed & Rizwan Ahmed & Chamaiporn Kumpamool & Mohga Bassim & Mohamed Elheddad, 2021. "The effects of regional trade integration and renewable energy transition on environmental quality: Evidence from South Asian neighbors," Business Strategy and the Environment, Wiley Blackwell, vol. 30(8), pages 4154-4170, December.
    16. Kartal, Mustafa Tevfik, 2022. "The role of consumption of energy, fossil sources, nuclear energy, and renewable energy on environmental degradation in top-five carbon producing countries," Renewable Energy, Elsevier, vol. 184(C), pages 871-880.
    17. Jiang, Qingquan & Khattak, Shoukat Iqbal & Rahman, Zia Ur, 2021. "Measuring the simultaneous effects of electricity consumption and production on carbon dioxide emissions (CO2e) in China: New evidence from an EKC-based assessment," Energy, Elsevier, vol. 229(C).
    18. Dardan Klimenta & Marija Mihajlović & Ivan Ristić & Darius Andriukaitis, 2022. "Possible Scenarios for Reduction of Carbon Dioxide Emissions in Serbia by Generating Electricity from Natural Gas," Energies, MDPI, vol. 15(13), pages 1-33, June.
    19. Hüseyin İçen, 2020. "Environmental Kuznets Curve in D8 Countries: Evidence from Panel Cointegration," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(32), pages 85-96, June.
    20. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Prediction of fluctuation loads based on GARCH family-CatBoost-CNNLSTM," Energy, Elsevier, vol. 263(PE).
    21. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    22. Davidmac O. Ekeocha & Jonathan E. Ogbuabor & Oliver E. Ogbonna & Anthony Orji, 2023. "Economic policy uncertainty, governance institutions and economic performance in Africa: are there regional differences?," Economic Change and Restructuring, Springer, vol. 56(3), pages 1367-1431, June.
    23. Zhao, Jun & Shahbaz, Muhammad & Dong, Xiucheng & Dong, Kangyin, 2021. "How does financial risk affect global CO2 emissions? The role of technological innovation," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    24. Gurbanov, Sarvar, 2021. "Role of Natural Gas Consumption in the Reduction of CO2 Emissions: Case of Azerbaijan," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 14(22).
    25. You-How Go & Lin-Sea Lau & Kwang-Jing Yii & Wee-Yeap Lau, 2020. "Does energy efficiency affect economic growth? Evidence from aggregate and disaggregate levels," Energy & Environment, , vol. 31(6), pages 983-1006, September.
    26. Dong, Kangyin & Dong, Xiucheng & Ren, Xiaohang, 2020. "Can expanding natural gas infrastructure mitigate CO2 emissions? Analysis of heterogeneous and mediation effects for China," Energy Economics, Elsevier, vol. 90(C).
    27. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Seun Damola Oladipupo & Ephraim Bonah Agyekum & Arunkumar Jayakumar & Nallapaneni Manoj Kumar, 2021. "Dominance of Fossil Fuels in Japan’s National Energy Mix and Implications for Environmental Sustainability," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    28. Valadkhani, Abbas & Nguyen, Jeremy & Bowden, Mark, 2019. "Pathways to reduce CO2 emissions as countries proceed through stages of economic development," Energy Policy, Elsevier, vol. 129(C), pages 268-278.
    29. Bingjie Xu & Ruoyu Zhong & Hui Qiao, 2020. "The impact of biofuel consumption on CO2 emissions: A panel data analysis for seven selected G20 countries," Energy & Environment, , vol. 31(8), pages 1498-1514, December.
    30. Vishal Dagar & Farhan Ahmed & Farah Waheed & Štefan Bojnec & Muhammad Kamran Khan & Sana Shaikh, 2022. "Testing the Pollution Haven Hypothesis with the Role of Foreign Direct Investments and Total Energy Consumption," Energies, MDPI, vol. 15(11), pages 1-23, May.
    31. Sharma, Gagan Deep & Tiwari, Aviral Kumar & Erkut, Burak & Mundi, Hardeep Singh, 2021. "Exploring the nexus between non-renewable and renewable energy consumptions and economic development: Evidence from panel estimations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    32. Yu, Zhang & Khan, Syed Abdul Rehman & Ponce, Pablo & Lopes de Sousa Jabbour, Ana Beatriz & Chiappetta Jabbour, Charbel Jose, 2022. "Factors affecting carbon emissions in emerging economies in the context of a green recovery: Implications for sustainable development goals," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    33. Seong-Jae Seo & Ju-Hee Kim & Seung-Hoon Yoo, 2020. "Public Preference for Increasing Natural Gas Generation for Reducing CO 2 Emissions in South Korea," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    34. Li, Zeyun & Leong, Lin Woon & N Aldoseri, Mahfod Mobarak & Muda, Iskandar & Abu-Rumman, Ayman & Al Shraah, Ata, 2023. "Examining the role of sustainability and natural resources management in improving environmental quality: Evidence from Asian countries," Resources Policy, Elsevier, vol. 80(C).
    35. Gruszecki Lech & Jozwik Bartosz & Kyophilavong Phouphet, 2020. "International Relations in the Environmental Kuznets Curve - Theoretical Considerations," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 964-982.
    36. Zhiheng Wu & Guisheng Hou & Baogui Xin, 2020. "The Causality between Participation in GVCs, Renewable Energy Consumption and CO 2 Emissions," Sustainability, MDPI, vol. 12(3), pages 1-26, February.
    37. Cao, Feifei, 2023. "Digital financial innovation and renewable electrification: A step toward zero carbon nexus," Renewable Energy, Elsevier, vol. 215(C).
    38. Li, Wei & Lu, Can, 2019. "The multiple effectiveness of state natural gas consumption constraint policies for achieving sustainable development targets in China," Applied Energy, Elsevier, vol. 235(C), pages 685-698.
    39. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    40. Li, Hui & Zhao, Jun & Zhang, Ruining & Hou, Bingdong, 2022. "The natural gas consumption and mortality nexus: A mediation analysis," Energy, Elsevier, vol. 248(C).
    41. Zhang, Zhenhua & Zhang, Yunpeng & Zhao, Mingcheng & Muttarak, Raya & Feng, Yanchao, 2023. "What is the global causality among renewable energy consumption, financial development, and public health? New perspective of mineral energy substitution," Resources Policy, Elsevier, vol. 85(PA).
    42. Dong, Kangyin & Sun, Renjin & Wu, Jin & Hochman, Gal, 2018. "The growth and development of natural gas supply chains: The case of China and the US," Energy Policy, Elsevier, vol. 123(C), pages 64-71.
    43. Gyamfi, Bright Akwasi & Bein, Murad A. & Udemba, Edmund Ntom & Bekun, Festus Victor, 2021. "Investigating the pollution haven hypothesis in oil and non-oil sub-Saharan Africa countries: Evidence from quantile regression technique," Resources Policy, Elsevier, vol. 73(C).
    44. Wan-Li Zhang & Chun-Ping Chang & Yang Xuan, 2022. "The impacts of climate change on bank performance: What’s the mediating role of natural disasters?," Economic Change and Restructuring, Springer, vol. 55(3), pages 1913-1952, August.
    45. Yasmeen, Rizwana & Tao, Rui & Jie, Wanchen & Padda, Ihtsham Ul Haq & Shah, Wasi Ul Hassan, 2022. "The repercussions of business cycles on renewable & non-renewable energy consumption structure: Evidence from OECD countries," Renewable Energy, Elsevier, vol. 190(C), pages 572-583.
    46. Qianxiao Zhang & Syed Asif Ali Naqvi & Syed Ale Raza Shah, 2021. "The Contribution of Outward Foreign Direct Investment, Human Well-Being, and Technology toward a Sustainable Environment," Sustainability, MDPI, vol. 13(20), pages 1-29, October.
    47. Kartal, Mustafa Tevfik & Pata, Ugur Korkut & Kılıç Depren, Serpil & Depren, Özer, 2023. "Effects of possible changes in natural gas, nuclear, and coal energy consumption on CO2 emissions: Evidence from France under Russia’s gas supply cuts by dynamic ARDL simulations approach," Applied Energy, Elsevier, vol. 339(C).
    48. Bartosz Jóźwik & Phouphet Kyophilavong & Aruna Kumar Dash & Antonina Viktoria Gavryshkiv, 2022. "Revisiting the Environmental Kuznets Curve Hypothesis in South Asian Countries: The Role of Energy Consumption and Trade Openness," Energies, MDPI, vol. 15(22), pages 1-20, November.
    49. Peiqi Hu & Kai Zhou & Haoxi Zhang & Zhong Ma & Jingyuan Li, 2023. "The Cause and Correlation Network of Air Pollution from a Spatial Perspective: Evidence from the Beijing–Tianjin–Hebei Region," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    50. Bartosz Jóźwik & Antonina-Victoria Gavryshkiv & Phouphet Kyophilavong & Lech Euzebiusz Gruszecki, 2021. "Revisiting the Environmental Kuznets Curve Hypothesis: A Case of Central Europe," Energies, MDPI, vol. 14(12), pages 1-17, June.
    51. Li, Jiaman & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin & Liu, Guixian, 2021. "Natural gas trade network of countries and regions along the belt and road: Where to go in the future?," Resources Policy, Elsevier, vol. 71(C).
    52. Hussein Moghaddam & Robert M. Kunst, 2023. "The Role of Natural Gas in Mitigating Greenhouse Gas Emissions: The Environmental Kuznets Curve Hypothesis for Major Gas-Producing Countries," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    53. Wang, Mengxia & Hossain, Mohammad Razib & Si Mohammed, Kamel & Cifuentes-Faura, Javier & Cai, Xiaotong, 2023. "Heterogenous Effects of Circular Economy, Green energy and Globalization on CO2 emissions: Policy based analysis for sustainable development," Renewable Energy, Elsevier, vol. 211(C), pages 789-801.
    54. Sharma, Rajesh & Sinha, Avik & Kautish, Pradeep, 2020. "Examining the impacts of economic and demographic aspects on the ecological footprint in South and Southeast Asian countries," MPRA Paper 104245, University Library of Munich, Germany, revised 2020.
    55. Zhang, Shun & Liu, Xuyi, 2019. "The roles of international tourism and renewable energy in environment: New evidence from Asian countries," Renewable Energy, Elsevier, vol. 139(C), pages 385-394.
    56. Dong, Kangyin & Jiang, Qingzhe & Shahbaz, Muhammad & Zhao, Jun, 2021. "Does low-carbon energy transition mitigate energy poverty? The case of natural gas for China," Energy Economics, Elsevier, vol. 99(C).
    57. Lochan Kumar Batala & Wangxing Yu & Anwar Khan & Kalpana Regmi & Xiaoli Wang, 2021. "Natural disasters' influence on industrial growth, foreign direct investment, and export performance in the South Asian region of Belt and road initiative," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1853-1876, September.
    58. Iftikhar Yasin & Nawaz Ahmad & M. Aslam Chaudhary, 2020. "Catechizing the Environmental-Impression of Urbanization, Financial Development, and Political Institutions: A Circumstance of Ecological Footprints in 110 Developed and Less-Developed Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 621-649, January.
    59. Zhang, Rongda & Wei, Jing & Zhao, Xiaoli & Liu, Yang, 2022. "Economic and environmental benefits of the integration between carbon sequestration and underground gas storage," Energy, Elsevier, vol. 260(C).
    60. Naqvi, Syed Asif Ali & Hussain, Mehvish & Hussain, Bilal & Shah, Syed Ale Raza & Nazir, Jawad & Usman, Muhammad, 2023. "Environmental sustainability and biomass energy consumption through the lens of pollution Haven hypothesis and renewable energy-environmental kuznets curve," Renewable Energy, Elsevier, vol. 212(C), pages 621-631.
    61. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    62. Wu, Dong & Geng, Yong & Pan, Hengyu, 2021. "Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    63. Hussain, Jamal & Khan, Anwar & Zhou, Kui, 2020. "The impact of natural resource depletion on energy use and CO2 emission in Belt & Road Initiative countries: A cross-country analysis," Energy, Elsevier, vol. 199(C).
    64. Liu, Xuyi & Kong, Hao & Zhang, Shun, 2021. "Can urbanization, renewable energy, and economic growth make environment more eco-friendly in Northeast Asia?," Renewable Energy, Elsevier, vol. 169(C), pages 23-33.
    65. Eleftherios Thalassinos & Marta Kadłubek & Le Minh Thong & Tran Van Hiep & Erginbay Ugurlu, 2022. "Managerial Issues Regarding the Role of Natural Gas in the Transition of Energy and the Impact of Natural Gas Consumption on the GDP of Selected Countries," Resources, MDPI, vol. 11(5), pages 1-22, April.
    66. Tao Shen & Runpu Hu & Peilin Hu & Zhang Tao, 2023. "Decoupling between Economic Growth and Carbon Emissions: Based on Four Major Regions in China," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    67. Ahmad, Munir & Khan, Irfan & Shahzad Khan, Muhammad Qaiser & Jabeen, Gul & Jabeen, Hafiza Samra & Işık, Cem, 2023. "Households' perception-based factors influencing biogas adoption: Innovation diffusion framework," Energy, Elsevier, vol. 263(PE).

  25. Wei, Yi-Ming & Chen, Hao & Chyong, Chi Kong & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun, 2018. "Economic dispatch savings in the coal-fired power sector: An empirical study of China," Energy Economics, Elsevier, vol. 74(C), pages 330-342.

    Cited by:

    1. Song, Feng & Bi, De & Wei, Chu, 2019. "Market segmentation and wind curtailment: An empirical analysis," Energy Policy, Elsevier, vol. 132(C), pages 831-838.
    2. Xuemei Zhenga & Flavio Menezes & Rabindra Nepal, 2020. "In Between the State and the Market: An Empirical Assessment of the Early Achievements of China’s 2015 Electricity Reform," Discussion Papers Series 633, School of Economics, University of Queensland, Australia.
    3. Li, Ru & Tang, Bao-Jun & Yu, Biying & Liao, Hua & Zhang, Chen & Wei, Yi-Ming, 2022. "Cost-optimal operation strategy for integrating large scale of renewable energy in China’s power system: From a multi-regional perspective," Applied Energy, Elsevier, vol. 325(C).
    4. Qin, Quande & Liu, Yuan & Huang, Jia-Ping, 2020. "A cooperative game analysis for the allocation of carbon emissions reduction responsibility in China's power industry," Energy Economics, Elsevier, vol. 92(C).
    5. Haonan Zhang & Xingping Zhang & Jiahai Yuan, 2020. "Coal power in China: A multi‐level perspective review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(6), November.
    6. Chenxi Xiang & Xinye Zheng & Feng Song & Jiang Lin & Zhigao Jiang, 2023. "Assessing the roles of efficient market versus regulatory capture in China’s power market reform," Nature Energy, Nature, vol. 8(7), pages 747-757, July.
    7. Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
    8. Ding, Qingguo & Wang, Jianxiao & Zhang, Bing & Yu, Yang, 2023. "Economic burden of China's fairness regulations on power generation sector," Energy, Elsevier, vol. 278(C).
    9. Timilsina, Govinda R. & Pang, Jun & Yang, Xi, 2021. "Macroeconomic impacts of power sector reforms in China," Energy Policy, Elsevier, vol. 157(C).
    10. Chen, Weiming & Zhang, Zhenjun & Chen, Kaiyuan, 2023. "Inter-regional economic-environmental correlation effects of power sector in China," Energy, Elsevier, vol. 278(C).
    11. Wu, Xiuqin & Zhao, Jinsong & Zhang, Dayong & Lee, Wen-Chieh & Yu, Chin-Hsien, 2022. "Resource misallocation and the development of hydropower industry," Applied Energy, Elsevier, vol. 306(PA).
    12. Kai Xu & Lawrence Loh & Qiang Chen, 2020. "Sustainable Innovation Governance: An Analysis of Regional Innovation with a Super Efficiency Slack-Based Measure Model," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    13. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    14. Jin, Jingliang & Wen, Qinglan & Cheng, Siqi & Qiu, Yaru & Zhang, Xianyue & Guo, Xiaojun, 2022. "Optimization of carbon emission reduction paths in the low-carbon power dispatching process," Renewable Energy, Elsevier, vol. 188(C), pages 425-436.
    15. Chen, Hao & Cui, Jian & Song, Feng & Jiang, Zhigao, 2022. "Evaluating the impacts of reforming and integrating China's electricity sector," Energy Economics, Elsevier, vol. 108(C).
    16. Prasad, Sanjeev K. & Mangaraj, B.K., 2022. "A multi-objective competitive-design framework for fuel procurement planning in coal-fired power plants for sustainable operations," Energy Economics, Elsevier, vol. 108(C).
    17. Li, Mingquan & Gao, Huiwen & Abdulla, Ahmed & Shan, Rui & Gao, Shuo, 2022. "Combined effects of carbon pricing and power market reform on CO2 emissions reduction in China's electricity sector," Energy, Elsevier, vol. 257(C).
    18. Ivan A. Kapitonov & Vladimir I. Voloshin & Vitaly G. Korolev, 2018. "Eastern Vector of Russian State Policy Development for Ensuring Energy Security," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 335-341.
    19. Zhang, Dongyang, 2021. "Marketization, environmental regulation, and eco-friendly productivity: A Malmquist–Luenberger index for pollution emissions of large Chinese firms," Journal of Asian Economics, Elsevier, vol. 76(C).
    20. Zhang, Ruixiaoxiao & Shimada, Koji & Ni, Meng & Shen, Geoffrey Q.P. & Wong, Johnny K.W., 2020. "Low or No subsidy? Proposing a regional power grid based wind power feed-in tariff benchmark price mechanism in China," Energy Policy, Elsevier, vol. 146(C).
    21. Xia, Fang & Lu, Xi & Song, Feng, 2020. "The role of feed-in tariff in the curtailment of wind power in China," Energy Economics, Elsevier, vol. 86(C).
    22. Chen, Hao & Geng, Hao-Peng & Ling, Hui-Ting & Peng, Song & Li, Nan & Yu, Shiwei & Wei, Yi-Ming, 2020. "Modeling the coal-to-gas switch potentials in the power sector: A case study of China," Energy, Elsevier, vol. 192(C).
    23. Luo, Qian & Garcia-Menendez, Fernando & Yang, Haozhe & Deshmukh, Ranjit & He, Gang & Lin, Jiang & Johnson, Jeremiah X, 2023. "The Health and Climate Benefits of Economic Dispatch in China’s Power System," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2vq7v90q, Department of Agricultural & Resource Economics, UC Berkeley.
    24. Jin, Jingliang & Wen, Qinglan & Zhao, Liya & Zhou, Chaoyang & Guo, Xiaojun, 2023. "Measuring environmental performance of power dispatch influenced by low-carbon approaches," Renewable Energy, Elsevier, vol. 209(C), pages 325-339.

  26. Wei, Yi-Ming & Kang, Jia-Ning & Yu, Bi-Ying & Liao, Hua & Du, Yun-Fei, 2017. "A dynamic forward-citation full path model for technology monitoring: An empirical study from shale gas industry," Applied Energy, Elsevier, vol. 205(C), pages 769-780.

    Cited by:

    1. Jong-Hyun Kim & Yong-Gil Lee, 2020. "Patent Analysis on the Development of the Shale Petroleum Industry Based on a Network of Technological Indices," Energies, MDPI, vol. 13(24), pages 1-15, December.
    2. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
    3. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-cui & Wang, Jin-Wei, 2021. "Observing technology reserves of carbon capture and storage via patent data: Paving the way for carbon neutral," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    4. Jong-Hyun Kim & Yong-Gil Lee, 2020. "Progress of Technological Innovation of the United States’ Shale Petroleum Industry Based on Patent Data Association Rules," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    5. de Wildt, Tristan E. & Chappin, Emile J.L. & van de Kaa, Geerten & Herder, Paulien M., 2018. "A comprehensive approach to reviewing latent topics addressed by literature across multiple disciplines," Applied Energy, Elsevier, vol. 228(C), pages 2111-2128.
    6. WANG, La-yin & ZHAO, Dong, 2021. "Cross-domain function analysis and trend study in Chinese construction industry based on patent semantic analysis," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    7. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    8. Yi-Ming Wei & Jin-Wei Wang & Tianqi Chen & Bi-Ying Yu & Hua Liao, 2018. "Frontiers of Low-Carbon Technologies: Results from Bibliographic Coupling with Sliding Window," CEEP-BIT Working Papers 116, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    9. Jong-Hyun Kim & Yong-Gil Lee, 2018. "Learning Curve, Change in Industrial Environment, and Dynamics of Production Activities in Unconventional Energy Resources," Sustainability, MDPI, vol. 10(9), pages 1-11, September.
    10. Kang, Jia-Ning & Zhang, Yun-Long & Chen, Weiming, 2022. "Delivering negative emissions innovation on the right track: A patent analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

  27. Jingwen Wu & Bingdong Hou & Ruo-Yu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2017. "Residential Fuel Choice in Rural Areas: Field Research of Two Counties of North China," Sustainability, MDPI, vol. 9(4), pages 1-16, April.

    Cited by:

    1. Curtis, John & McCoy, Daire & Aravena, Claudia, 2018. "Heating system upgrades: The role of knowledge, socio-demographics, building attributes and energy infrastructure," Energy Policy, Elsevier, vol. 120(C), pages 183-196.
    2. Andante Hadi Pandyaswargo & Mengyi Ruan & Eiei Htwe & Motoshi Hiratsuka & Alan Dwi Wibowo & Yuji Nagai & Hiroshi Onoda, 2020. "Estimating the Energy Demand and Growth in Off-Grid Villages: Case Studies from Myanmar, Indonesia, and Laos," Energies, MDPI, vol. 13(20), pages 1-22, October.
    3. Chen, Qiu, 2021. "District or distributed space heating in rural residential sector? Empirical evidence from a discrete choice experiment in South China," Energy Policy, Elsevier, vol. 148(PA).
    4. Liexun Yang & Peng Zhou & Ning Zhang, 2017. "A Review of Low-Carbon Transformation and Energy Innovation Issues in China," Sustainability, MDPI, vol. 9(7), pages 1-6, July.
    5. Curtis, John & McCoy, Daire & Aravena Novielli, Claudia, 2017. "Determinants of residential heating system choice: an analysis of Irish households," Papers WP576, Economic and Social Research Institute (ESRI).
    6. Hou, Bingdong & Wu, Jingwen & Mi, Zhifu & Ma, Chunbo & Shi, Xunpeng & Liao, Hua, 2022. "Cooking fuel types and the health effects: A field study in China," Energy Policy, Elsevier, vol. 167(C).

  28. Han, Rong & Yu, Bi-Ying & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2017. "Carbon emissions quotas in the Chinese road transport sector: A carbon trading perspective," Energy Policy, Elsevier, vol. 106(C), pages 298-309.

    Cited by:

    1. Shaofu Du & Jun Qian & Tianzhuo Liu & Li Hu, 2020. "Emission allowance allocation mechanism design: a low-carbon operations perspective," Annals of Operations Research, Springer, vol. 291(1), pages 247-280, August.
    2. Wanke, Peter Fernandes & Chiappetta Jabbour, Charbel José & Moreira Antunes, Jorge Junio & Lopes de Sousa Jabbour, Ana Beatriz & Roubaud, David & Sobreiro, Vinicius Amorim & Santibanez Gonzalez‬, Erne, 2021. "An original information entropy-based quantitative evaluation model for low-carbon operations in an emerging market," International Journal of Production Economics, Elsevier, vol. 234(C).
    3. Cui, Lixin & Dong, Ruxue & Mu, Yunguo & Shen, Zhiyang & Xu, Jiatong, 2022. "How policy preferences affect the carbon shadow price in the OECD," Applied Energy, Elsevier, vol. 311(C).
    4. Ülengin, Füsun & Işık, Mine & Ekici, Şule Önsel & Özaydın, Özay & Kabak, Özgür & Topçu, Y. İlker, 2018. "Policy developments for the reduction of climate change impacts by the transportation sector," Transport Policy, Elsevier, vol. 61(C), pages 36-50.
    5. Zhixiong Weng & Cuiyun Cheng & Yang Xie & Hao Ma, 2022. "Reduction Effect of Carbon Emission Trading Policy in Decreasing PM 2.5 Concentrations in China," IJERPH, MDPI, vol. 19(23), pages 1-12, December.
    6. Ou, Shiqi & Lin, Zhenhong & Qi, Liang & Li, Jie & He, Xin & Przesmitzki, Steven, 2018. "The dual-credit policy: Quantifying the policy impact on plug-in electric vehicle sales and industry profits in China," Energy Policy, Elsevier, vol. 121(C), pages 597-610.
    7. Jose L. Arroyo & Ángel Felipe & M. Teresa Ortuño & Gregorio Tirado, 2020. "Effectiveness of carbon pricing policies for promoting urban freight electrification: analysis of last mile delivery in Madrid," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(4), pages 1417-1440, December.
    8. Liu, Yajuan & Wang, Yutao & Mi, Zhifu & Ma, Zhongyu, 2018. "Carbon implications of China’s changing economic structure at the city level," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 163-171.
    9. Ma, Haicheng & Lou, Gaoxiang & Fan, Tijun & Chan, Hing Kai & Chung, Sai Ho, 2021. "Conventional automotive supply chains under China's dual-credit policy: fuel economy, production and coordination," Energy Policy, Elsevier, vol. 151(C).
    10. Bao-Jun Tang & Yu-Jie Hu, 2019. "How to Allocate the Allowance for the Aviation Industry in China’s Emissions Trading System," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    11. Ou, Shiqi & Lin, Zhenhong & Xu, Guoquan & Hao, Xu & Li, Hongwei & Gao, Zhiming & He, Xin & Przesmitzki, Steven & Bouchard, Jessey, 2020. "The retailed gasoline price in China: Time-series analysis and future trend projection," Energy, Elsevier, vol. 191(C).
    12. Yali Zhang & Yihan Wang & Xiaoshu Hou, 2019. "Carbon Mitigation for Industrial Sectors in the Jing-Jin-Ji Urban Agglomeration, China," Sustainability, MDPI, vol. 11(22), pages 1-13, November.
    13. Abdelghani Bekrar & Abdessamad Ait El Cadi & Raca Todosijevic & Joseph Sarkis, 2021. "Digitalizing the Closing-of-the-Loop for Supply Chains: A Transportation and Blockchain Perspective," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    14. Shuai Zhang & Xiaoman Zhao & Changwei Yuan & Xiu Wang, 2020. "Technological Bias and Its Influencing Factors in Sustainable Development of China’s Transportation," Sustainability, MDPI, vol. 12(14), pages 1-26, July.
    15. Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    16. Ye Ma & Biying Yu & Meimei Xue, 2018. "Spatial Heterogeneous Characteristics of Ridesharing in Beijing–Tianjin–Hebei Region of China," Energies, MDPI, vol. 11(11), pages 1-21, November.
    17. Xiangyang Yu & Xiaojing Wang, 2023. "Research on Carbon-Trading Model of Urban Public Transport Based on Blockchain Technology," Energies, MDPI, vol. 16(6), pages 1-21, March.
    18. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    19. Liu, Jiaguo & Li, Sujuan & Ji, Qiang, 2021. "Regional differences and driving factors analysis of carbon emission intensity from transport sector in China," Energy, Elsevier, vol. 224(C).
    20. Bingxin Zeng & Jun Xie & Xiaobing Zhang & Yang Yu & Lei Zhu, 2020. "The impacts of emission trading scheme on China’s thermal power industry: A pre-evaluation from the micro level," Energy & Environment, , vol. 31(6), pages 1007-1030, September.
    21. Fang Wan & Jizu Li, 2023. "Responsibility Allocation of Provincial Industry Emission Reduction from the Perspective of Industrial Linkages—A Case Study of Shanxi Province," Sustainability, MDPI, vol. 15(12), pages 1-14, June.

  29. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.

    Cited by:

    1. Wei, Yi-Ming & Kang, Jia-Ning & Yu, Bi-Ying & Liao, Hua & Du, Yun-Fei, 2017. "A dynamic forward-citation full path model for technology monitoring: An empirical study from shale gas industry," Applied Energy, Elsevier, vol. 205(C), pages 769-780.
    2. Lijun Zeng & Laijun Zhao & Qin Wang & Bingcheng Wang & Yuan Ma & Wei Cui & Yujing Xie, 2018. "Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective," Energies, MDPI, vol. 11(1), pages 1-25, January.
    3. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    4. Wei, Wei & Mushtaq, Zulqarnain & Sharif, Maimoona & Zeng, Xiaowu & Wan-Li, Zhang & Qaisrani, Mumtaz A., 2020. "Evaluating the coal rebound effect in energy intensive industries of China," Energy, Elsevier, vol. 207(C).
    5. Li, Shoujun & Ma, Xiaoping & Yang, Chunyu, 2018. "A combined thermal power plant investment decision-making model based on intelligent fuzzy grey model and ito stochastic process and its application," Energy, Elsevier, vol. 159(C), pages 1102-1117.
    6. Haonan Zhang & Xingping Zhang & Jiahai Yuan, 2020. "Coal power in China: A multi‐level perspective review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(6), November.
    7. Chen, Heng & Wu, Yunyun & Qi, Zhen & Chen, Qiao & Xu, Gang & Yang, Yongping & Liu, Wenyi, 2019. "Improved combustion air preheating design using multiple heat sources incorporating bypass flue in large-scale coal-fired power unit," Energy, Elsevier, vol. 169(C), pages 527-541.
    8. Tang, Bao-Jun & Guo, Yang-Yang & Yu, Biying & Harvey, L.D. Danny, 2021. "Pathways for decarbonizing China’s building sector under global warming thresholds," Applied Energy, Elsevier, vol. 298(C).
    9. Chen, H. & Chyong CK. & Kang, J-N. & Wei Y-M., 2018. "Economic dispatch in the electricity sector in China: potential benefits and challenges ahead," Cambridge Working Papers in Economics 1836, Faculty of Economics, University of Cambridge.
    10. Tang, Baojun & Li, Ru & Yu, Biying & An, Runying & Wei, Yi-Ming, 2018. "How to peak carbon emissions in China's power sector: A regional perspective," Energy Policy, Elsevier, vol. 120(C), pages 365-381.
    11. Liu, Yang & Zhang, Congrui & Xu, Xiaochuan & Ge, Yongxiang & Ren, Gaofeng, 2022. "Assessment of energy conservation potential and cost in open-pit metal mines: Bottom-up approach integrated energy conservation supply curve and ultimate pit limit," Energy Policy, Elsevier, vol. 163(C).
    12. Zheng, Qingying & Lin, Boqiang, 2020. "Achieving energy conservation targets in a more cost-effective way: Case study of pulp and paper industry in China," Energy, Elsevier, vol. 191(C).
    13. Wang, Yihan & Wen, Zongguo & Cao, Xin & Dinga, Christian Doh, 2022. "Is information and communications technology effective for industrial energy conservation and emission reduction? Evidence from three energy-intensive industries in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    15. Haibing Wang & Bowen Li & Muhammad Qasim Khan, 2022. "Prediction of Shanghai Electric Power Carbon Emissions Based on Improved STIRPAT Model," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    16. Jing-Ming Chen & Biying Yu & Yi-Ming Wei, 2019. "CO2 emissions accounting for the chemical industry: an empirical analysis for China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1327-1343, December.
    17. Liang, Yuanyuan & Yu, Biying & Wang, Lu, 2019. "Costs and benefits of renewable energy development in China's power industry," Renewable Energy, Elsevier, vol. 131(C), pages 700-712.
    18. Li, Ying & Chiu, Yung-ho & Lin, Tai-Yu, 2019. "Coal production efficiency and land destruction in China's coal mining industry," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    19. Wei, Yi-Ming & Chen, Hao & Chyong, Chi Kong & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun, 2018. "Economic dispatch savings in the coal-fired power sector: An empirical study of China," Energy Economics, Elsevier, vol. 74(C), pages 330-342.
    20. Xie, Pinjie & Yang, Fan & Mu, Zhuowen & Gao, Shuangshuang, 2020. "Influencing factors of the decoupling relationship between CO2 emission and economic development in China’s power industry," Energy, Elsevier, vol. 209(C).
    21. Xie, Xiaomin & Jiang, Xiaoyun & Zhang, Tingting & Huang, Zhen, 2019. "Regional water footprints assessment for hydroelectricity generation in China," Renewable Energy, Elsevier, vol. 138(C), pages 316-325.
    22. Bingxin Zeng & Jun Xie & Xiaobing Zhang & Yang Yu & Lei Zhu, 2020. "The impacts of emission trading scheme on China’s thermal power industry: A pre-evaluation from the micro level," Energy & Environment, , vol. 31(6), pages 1007-1030, September.
    23. Nadimi, Reza & Tokimatsu, Koji, 2018. "Modeling of quality of life in terms of energy and electricity consumption," Applied Energy, Elsevier, vol. 212(C), pages 1282-1294.

  30. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    See citations under working paper version above.
  31. Zhimin Huang & Yi-Ming Wei & Ke Wang & Hua Liao, 2017. "Energy economics and climate policy modeling," Annals of Operations Research, Springer, vol. 255(1), pages 1-7, August.

    Cited by:

    1. Xu Lei & Tang Shiyun & Deng Yanfei & Yuan Yuan, 2020. "Sustainable operation-oriented investment risk evaluation and optimization for renewable energy project: a case study of wind power in China," Annals of Operations Research, Springer, vol. 290(1), pages 223-241, July.
    2. Laura Laguna-Salvadó & Matthieu Lauras & Uche Okongwu & Tina Comes, 2019. "A multicriteria Master Planning DSS for a sustainable humanitarian supply chain," Annals of Operations Research, Springer, vol. 283(1), pages 1303-1343, December.
    3. Han, Yongming & Lou, Xiaoyi & Feng, Mingfei & Geng, Zhiqiang & Chen, Liangchao & Ping, Weiying & Lu, Gang, 2022. "Energy consumption analysis and saving of buildings based on static and dynamic input-output models," Energy, Elsevier, vol. 239(PC).
    4. Chinnadurai Kathiravan & Murugesan Selvam & Sankaran Venkateswar & S. Balakrishnan, 2021. "Investor behavior and weather factors: evidences from Asian region," Annals of Operations Research, Springer, vol. 299(1), pages 349-373, April.
    5. Chenhao Fang & Tieju Ma, 2021. "Technology adoption with carbon emission trading mechanism: modeling with heterogeneous agents and uncertain carbon price," Annals of Operations Research, Springer, vol. 300(2), pages 577-600, May.

  32. Liao, Hua & Du, Yun-Fei & Huang, Zhimin & Wei, Yi-Ming, 2016. "Measuring energy economic efficiency: A mathematical programming approach," Applied Energy, Elsevier, vol. 179(C), pages 479-487.

    Cited by:

    1. Wang, Xipan & Song, Junnian & Duan, Haiyan & Wang, Xian'en, 2021. "Coupling between energy efficiency and industrial structure: An urban agglomeration case," Energy, Elsevier, vol. 234(C).
    2. Ji, Xiang & Li, Guo & Wang, Zhaohua, 2017. "Allocation of emission permits for China’s power plants: A systemic Pareto optimal method," Applied Energy, Elsevier, vol. 204(C), pages 607-619.
    3. Benedetti, Miriam & Bonfa', Francesca & Bertini, Ilaria & Introna, Vito & Ubertini, Stefano, 2018. "Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 227(C), pages 436-448.
    4. Muhammad Rizwan & Ping Qing & Abdul Saboor & Muhammad Amjed Iqbal & Adnan Nazir, 2020. "Production Risk and Competency among Categorized Rice Peasants: Cross-Sectional Evidence from an Emerging Country," Sustainability, MDPI, vol. 12(9), pages 1-15, May.
    5. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    6. Eissa, M.M., 2019. "Developing incentive demand response with commercial energy management system (CEMS) based on diffusion model, smart meters and new communication protocol," Applied Energy, Elsevier, vol. 236(C), pages 273-292.
    7. Han, Yongming & Wu, Hao & Geng, Zhiqiang & Zhu, Qunxiong & Gu, Xiangbai & Yu, Bin, 2020. "Review: Energy efficiency evaluation of complex petrochemical industries," Energy, Elsevier, vol. 203(C).
    8. Nielsen, Hana & Warde, Paul & Kander, Astrid, 2018. "East versus West: Energy intensity in coal-rich Europe, 1800–2000," Energy Policy, Elsevier, vol. 122(C), pages 75-83.

  33. Yi-Ming Wei & Ke Wang & Hua Liao & Hirokazu Tatano, 2016. "Economics of climate change and risk of disasters in Asia–Pacific region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 1-5, November.

    Cited by:

    1. Kirsten Halsnæs & Morten Andreas Dahl Larsen & Per Skougaard Kaspersen, 2018. "Climate change risks for severe storms in developing countries in the context of poverty and inequality in Cambodia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 261-278, October.

  34. Chen, Hao & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2016. "A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China," Applied Energy, Elsevier, vol. 183(C), pages 1333-1345.
    See citations under working paper version above.
  35. Jing-Li Fan & Hua Liao & Bao-Jun Tang & Su-Yan Pan & Hao Yu & Yi-Ming Wei, 2016. "The impacts of migrant workers consumption on energy use and CO2 emissions in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 725-743, March.

    Cited by:

    1. Qi, Wei & Li, Guangdong, 2020. "Residential carbon emission embedded in China's inter-provincial population migration," Energy Policy, Elsevier, vol. 136(C).
    2. Chunhong Sheng & Yun Cao & Bing Xue, 2018. "Residential Energy Sustainability in China and Germany: The Impact of National Energy Policy System," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    3. Jian-Xin Wu & Ling-Yun He, 2016. "How do Chinese cities grow? A distribution dynamics approach," Papers 1612.02657, arXiv.org.
    4. Hua Liao & Celio Andrade & Julio Lumbreras & Jing Tian, 2018. "CO2 Emissions in Beijing: Sectoral Linkages and Demand Drivers," CEEP-BIT Working Papers 113, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    5. Shuddhasattwa Rafiq & Ingrid Nielsen & Russell Smyth, 2016. "Effect of Internal Migration on Air and Water Pollution in China," Monash Economics Working Papers 27-16, Monash University, Department of Economics.
    6. Rafiq, Shuddhasattwa & Nielsen, Ingrid & Smyth, Russell, 2017. "Effect of internal migration on the environment in China," Energy Economics, Elsevier, vol. 64(C), pages 31-44.
    7. Gao, Cuixia & Tao, Simin & He, Yuyang & Su, Bin & Sun, Mei & Mensah, Isaac Adjei, 2021. "Effect of population migration on spatial carbon emission transfers in China," Energy Policy, Elsevier, vol. 156(C).
    8. Ying Jiang & Linghan Zhang & Junyi Zhang, 2019. "Energy consumption by rural migrant workers and urban residents with a hukou in China: quality-of-life-related factors and built environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1431-1453, December.

  36. Yanan Liu & Yixuan Gao & Yu Hao & Hua Liao, 2016. "The Relationship between Residential Electricity Consumption and Income: A Piecewise Linear Model with Panel Data," Energies, MDPI, vol. 9(10), pages 1-11, October.

    Cited by:

    1. Dalla Longa, Francesco & van der Zwaan, Bob, 2021. "Heart of light: an assessment of enhanced electricity access in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    2. Djula Borozan, 2018. "Efficiency of Energy Taxes and the Validity of the Residential Electricity Environmental Kuznets Curve in the European Union," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    3. Poblete-Cazenave, Miguel & Pachauri, Shonali, 2020. "A simulation-based estimation model of household electricity demand and appliance ownership," MPRA Paper 103403, University Library of Munich, Germany.
    4. Onisanwa Idowu Daniel & Adaji Mercy Ojochegbe, 2020. "Electricity consumption and its determinants in Nigeria," Journal of Economics and Management, Sciendo, vol. 41(3), pages 87-104, September.
    5. Li, Chuan-Zhong & Wei, Chu & Yu, Yang, 2020. "Income threshold, household appliance ownership and residential energy consumption in urban China," China Economic Review, Elsevier, vol. 60(C).
    6. Rehermann, F. & Pablo-Romero, M., 2018. "Economic growth and transport energy consumption in the Latin American and Caribbean countries," Energy Policy, Elsevier, vol. 122(C), pages 518-527.
    7. Poblete-Cazenave, Miguel & Pachauri, Shonali, 2021. "A model of energy poverty and access: Estimating household electricity demand and appliance ownership," Energy Economics, Elsevier, vol. 98(C).
    8. Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.

  37. Chen, Hao & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2016. "Impacts of OPEC's political risk on the international crude oil prices: An empirical analysis based on the SVAR models," Energy Economics, Elsevier, vol. 57(C), pages 42-49.
    See citations under working paper version above.
  38. Liao, Hua & Cai, Jia-Wei & Yang, Dong-Wei & Wei, Yi-Ming, 2016. "Why did the historical energy forecasting succeed or fail? A case study on IEA's projection," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 90-96.

    Cited by:

    1. Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
    2. Wang, Fangzhi & Liao, Hua, 2022. "Unexpected economic growth and oil price shocks," Energy Economics, Elsevier, vol. 116(C).
    3. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2022. "Accuracy indicators for evaluating retrospective performance of energy system models," Applied Energy, Elsevier, vol. 325(C).
    4. Yuan, Xiao-Chen & Sun, Xun & Zhao, Weigang & Mi, Zhifu & Wang, Bing & Wei, Yi-Ming, 2017. "Forecasting China’s regional energy demand by 2030: A Bayesian approach," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 85-95.
    5. Moret, Stefano & Codina Gironès, Víctor & Bierlaire, Michel & Maréchal, François, 2017. "Characterization of input uncertainties in strategic energy planning models," Applied Energy, Elsevier, vol. 202(C), pages 597-617.
    6. Wachtmeister, Henrik & Henke, Petter & Höök, Mikael, 2018. "Oil projections in retrospect: Revisions, accuracy and current uncertainty," Applied Energy, Elsevier, vol. 220(C), pages 138-153.

  39. Liao, Hua & Tang, Xin & Wei, Yi-Ming, 2016. "Solid fuel use in rural China and its health effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 900-908.
    See citations under working paper version above.
  40. Jing Tian & Hua Liao & Ce Wang, 2015. "Spatial–temporal variations of embodied carbon emission in global trade flows: 41 economies and 35 sectors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1125-1144, September.
    See citations under working paper version above.
  41. Hao, Yu & Liao, Hua & Wei, Yi-Ming, 2015. "Is China’s carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," Applied Energy, Elsevier, vol. 142(C), pages 229-239.
    See citations under working paper version above.
  42. Burke, Paul J. & Liao, Hua, 2015. "Is the price elasticity of demand for coal in China increasing?," China Economic Review, Elsevier, vol. 36(C), pages 309-322.
    See citations under working paper version above.
  43. Yi-Xuan Gao & Hua Liao & Paul J. Burke & Yi-Ming Wei, 2015. "Road transport energy consumption in the G7 and BRICS: 1973-2010," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 38(4/5/6), pages 342-356.
    See citations under working paper version above.
  44. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    See citations under working paper version above.
  45. Zhu, Zhi-Shuang & Liao, Hua & Cao, Huai-Shu & Wang, Lu & Wei, Yi-Ming & Yan, Jinyue, 2014. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," Applied Energy, Elsevier, vol. 113(C), pages 808-815.
    See citations under working paper version above.
  46. Wang, Ce & Liao, Hua & Pan, Su-Yan & Zhao, Lu-Tao & Wei, Yi-Ming, 2014. "The fluctuations of China’s energy intensity: Biased technical change," Applied Energy, Elsevier, vol. 135(C), pages 407-414.
    See citations under working paper version above.
  47. Wang, Can & Lin, Jie & Cai, Wenjia & Liao, Hua, 2014. "China׳s carbon mitigation strategies: Enough?," Energy Policy, Elsevier, vol. 73(C), pages 47-56.

    Cited by:

    1. Qin, Ying & Curmi, Elizabeth & Kopec, Grant M. & Allwood, Julian M. & Richards, Keith S., 2015. "China's energy-water nexus – assessment of the energy sector's compliance with the “3 Red Lines” industrial water policy," Energy Policy, Elsevier, vol. 82(C), pages 131-143.
    2. Tian, Jing & Andraded, Celio & Lumbreras, Julio & Guan, Dabo & Wang, Fangzhi & Liao, Hua, 2018. "Integrating Sustainability Into City-level CO2 Accounting: Social Consumption Pattern and Income Distribution," Ecological Economics, Elsevier, vol. 153(C), pages 1-16.
    3. Zheng, Heran & Shan, Yuli & Mi, Zhifu & Meng, Jing & Ou, Jiamin & Schroeder, Heike & Guan, Dabo, 2018. "How modifications of China's energy data affect carbon mitigation targets," Energy Policy, Elsevier, vol. 116(C), pages 337-343.
    4. Duan, Hongbo & Mo, Jianlei & Fan, Ying & Wang, Shouyang, 2018. "Achieving China's energy and climate policy targets in 2030 under multiple uncertainties," Energy Economics, Elsevier, vol. 70(C), pages 45-60.
    5. Zhou, Wei & Gao, Lan, 2016. "The impact of carbon trade on the management of short-rotation forest plantations," Forest Policy and Economics, Elsevier, vol. 62(C), pages 30-35.
    6. Xi Xie & Wenjia Cai & Yongkai Jiang & Weihua Zeng, 2015. "Carbon Footprints and Embodied Carbon Flows Analysis for China’s Eight Regions: A New Perspective for Mitigation Solutions," Sustainability, MDPI, vol. 7(8), pages 1-17, July.
    7. Gerritsen, Dirk F., 2015. "Security analysts’ target prices and takeover premiums," Finance Research Letters, Elsevier, vol. 13(C), pages 205-213.
    8. Liu, Wenling & Zhang, Jinyun & Bluemling, Bettina & Mol, Arthur P.J. & Wang, Can, 2015. "Public participation in energy saving retrofitting of residential buildings in China," Applied Energy, Elsevier, vol. 147(C), pages 287-296.
    9. Tang, Bao-Jun & Li, Ru & Li, Xiao-Yi & Chen, Hao, 2017. "An optimal production planning model of coal-fired power industry in China: Considering the process of closing down inefficient units and developing CCS technologies," Applied Energy, Elsevier, vol. 206(C), pages 519-530.
    10. Vieira de Souza, Luiz Enrique & Gilmanova Cavalcante, Alina Mikhailovna, 2017. "Concentrated Solar Power deployment in emerging economies: The cases of China and Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1094-1103.

  48. Wei, Yi-Ming & Wang, Lu & Liao, Hua & Wang, Ke & Murty, Tad & Yan, Jinyue, 2014. "Responsibility accounting in carbon allocation: A global perspective," Applied Energy, Elsevier, vol. 130(C), pages 122-133.

    Cited by:

    1. Li, Mengyu & Duan, Maosheng, 2020. "Efforts-sharing to achieve the Paris goals: Ratcheting-up of NDCs and taking full advantage of international carbon market," Applied Energy, Elsevier, vol. 280(C).
    2. Shi, Wei & Li, Wei & Qiao, Fuwei & Wang, Weijuan & An, Yi & Zhang, Guowei, 2023. "An inter-provincial carbon quota study in China based on the contribution of clean energy to carbon reduction," Energy Policy, Elsevier, vol. 182(C).
    3. Qinliang Tan & Jin Zheng & Yihong Ding & Yimei Zhang, 2020. "Provincial Carbon Emission Quota Allocation Study in China from the Perspective of Abatement Cost and Regional Cooperation," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    4. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Temporal and Spatial Variations in Provincial CO 2 Emissions in China from 2005 to 2015 and Assessment of a Reduction Plan," Energies, MDPI, vol. 8(5), pages 1-23, May.
    5. Han, Rong & Yu, Bi-Ying & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2017. "Carbon emissions quotas in the Chinese road transport sector: A carbon trading perspective," Energy Policy, Elsevier, vol. 106(C), pages 298-309.
    6. Zhifu Mi & Hua Liao & D’Maris Coffman & Yi-Ming Wei, 2019. "Assessment of equity principles for international climate policy based on an integrated assessment model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 309-323, January.
    7. Li, Huanan & Wei, Yi-Ming, 2015. "Is it possible for China to reduce its total CO2 emissions?," Energy, Elsevier, vol. 83(C), pages 438-446.
    8. Ji, Xiang & Li, Guo & Wang, Zhaohua, 2017. "Allocation of emission permits for China’s power plants: A systemic Pareto optimal method," Applied Energy, Elsevier, vol. 204(C), pages 607-619.
    9. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    10. Minxing Jiang & Bangzhu Zhu & Julien Chevallier & Rui Xie, 2018. "Allocating Provincial CO2 Quotas for the Chinese National Carbon Program," Working Papers 2018-010, Department of Research, Ipag Business School.
    11. Zhang, Lulu & Yu, Chang & Cheng, Baodong & Yang, Chao & Chang, Yuan, 2020. "Mitigating climate change by global timber carbon stock: Accounting, flow and allocation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Wang Lu & Hao Yu & Wei Yi-Ming, 2017. "How Do Regional Interactions in Space Affect China’s Mitigation Targets and Economic Development?," Working Papers 2017.21, Fondazione Eni Enrico Mattei.
    13. Ziheng Niu & Jianliang Xiong & Xuesong Ding & Yao Wu, 2022. "Analysis of China’s Carbon Peak Achievement in 2025," Energies, MDPI, vol. 15(14), pages 1-18, July.
    14. Chen, Lei & Xu, Linyu & Yang, Zhifeng, 2019. "Inequality of industrial carbon emissions of the urban agglomeration and its peripheral cities: A case in the Pearl River Delta, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 438-447.
    15. Huiqin Jiang & Xinxiao Shao & Xiao Zhang & Jianqiang Bao, 2017. "A Study of the Allocation of Carbon Emission Permits among the Provinces of China Based on Fairness and Efficiency," Sustainability, MDPI, vol. 9(11), pages 1-17, November.
    16. Jin, Gui & Shi, Xin & Zhang, Lei & Hu, Shougeng, 2020. "Measuring the SCCs of different Chinese regions under future scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    17. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Chen, Zuoqi & Liu, Rui & Li, Linyi & Wu, Jianping, 2016. "Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis," Applied Energy, Elsevier, vol. 168(C), pages 523-533.
    18. Fan, Xiaojia & Wu, Sanmang & Li, Shantong, 2019. "Spatial-temporal analysis of carbon emissions embodied in interprovincial trade and optimization strategies: A case study of Hebei, China," Energy, Elsevier, vol. 185(C), pages 1235-1249.
    19. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    20. Chiu-Ming Hsiao, 2022. "Economic Growth, CO 2 Emissions Quota and Optimal Allocation under Uncertainty," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    21. Yang, Lisha & Li, Yutianhao & Liu, Hongxun, 2021. "Did carbon trade improve green production performance? Evidence from China," Energy Economics, Elsevier, vol. 96(C).
    22. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    23. Yu-Jie Hu & Rong Han & Bao-Jun Tang, 2017. "Research on the initial allocation of carbon emission quotas: evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1189-1208, January.
    24. Miao, Zhuang & Chen, Xiaodong & Baležentis, Tomas & Sun, Chuanwang, 2019. "Atmospheric environmental productivity across the provinces of China: Joint decomposition of range adjusted measure and Luenberger productivity indicator," Energy Policy, Elsevier, vol. 132(C), pages 665-677.
    25. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    26. Jiasen Sun & Guo Li, 2020. "Designing a double auction mechanism for the re-allocation of emission permits," Annals of Operations Research, Springer, vol. 291(1), pages 847-874, August.
    27. Qianting Zhu & Wenwu Tang, 2017. "Regional-Level Carbon Allocation in China Based on Sectoral Emission Patterns under the Peak Commitment," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    28. Jianguo Zhou & Yushuo Li & Xuejing Huo & Xiaolei Xu, 2019. "How to Allocate Carbon Emission Permits Among China’s Industrial Sectors Under the Constraint of Carbon Intensity?," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    29. Yi-Ming Wei & Rong Han & Qiao-Mei Liang & Bi-Ying Yu & Yun-Fei Yao & Mei-Mei Xue & Kun Zhang & Li-Jing Liu & Juan Peng & Pu Yang & Zhi-Fu Mi & Yun-Fei Du & Ce Wang & Jun-Jie Chang & Qian-Ru Yang & Zil, 2018. "An integrated assessment of INDCs under Shared Socioeconomic Pathways: an implementation of C3IAM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 585-618, June.
    30. Jayaraman, Raja & Colapinto, Cinzia & La Torre, Davide & Malik, Tufail, 2017. "A Weighted Goal Programming model for planning sustainable development applied to Gulf Cooperation Council Countries," Applied Energy, Elsevier, vol. 185(P2), pages 1931-1939.
    31. Xuemei Jiang & Quanrun Chen & Cuihong Yang, 2018. "A Comparison Of Producer, Consumer And Shared Responsibility Based On A New Inter-Country Input–Output Table Capturing Trade Heterogeneity," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 295-311, March.
    32. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    33. Shu Su & Jingyi Ju & Yujie Ding & Jingfeng Yuan & Peng Cui, 2022. "A Comprehensive Dynamic Life Cycle Assessment Model: Considering Temporally and Spatially Dependent Variations," IJERPH, MDPI, vol. 19(21), pages 1-18, October.
    34. Fang Wan & Jizu Li, 2023. "Responsibility Allocation of Provincial Industry Emission Reduction from the Perspective of Industrial Linkages—A Case Study of Shanxi Province," Sustainability, MDPI, vol. 15(12), pages 1-14, June.

  49. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
    See citations under working paper version above.
  50. Liao, Hua & Du, Jian & Wei, Yi-Ming, 2013. "Energy conservation in China: Key provincial sectors at two-digit level," Applied Energy, Elsevier, vol. 104(C), pages 457-465.
    See citations under working paper version above.
  51. Liao, Hua & Wei, Yi-Ming, 2012. "Will the aggregation approach affect energy efficiency performance assessment?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4537-4542.
    See citations under working paper version above.
  52. Liao, Hua & Wei, Yi-Ming, 2010. "China's energy consumption: A perspective from Divisia aggregation approach," Energy, Elsevier, vol. 35(1), pages 28-34.
    See citations under working paper version above.
  53. Fan, Ying & Liao, Hua & Wei, Yi-Ming, 2007. "Can market oriented economic reforms contribute to energy efficiency improvement? Evidence from China," Energy Policy, Elsevier, vol. 35(4), pages 2287-2295, April.

    Cited by:

    1. Khalid, Waqar & Özdeşer, Hüseyin & Jalil, Abdul, 2021. "An empirical analysis of inter-factor and inter-fuel substitution in the energy sector of Pakistan," Renewable Energy, Elsevier, vol. 177(C), pages 953-966.
    2. Fisher-Vanden, Karen & Hu, Yong & Jefferson, Gary & Rock, Michael & Toman, Michael, 2013. "Factors influencing energy intensity in four Chinese industries," Policy Research Working Paper Series 6551, The World Bank.
    3. Hengyun Ma & Les Oxley & John Gibson, 2009. "China’s Energy Situation and Its Implications in the New Millennium," Working Papers 09_04, Motu Economic and Public Policy Research.
    4. Yang, Mian & Fan, Ying & Yang, Fuxia & Hu, Hui, 2014. "Regional disparities in carbon dioxide reduction from China's uniform carbon tax: A perspective on interfactor/interfuel substitution," Energy, Elsevier, vol. 74(C), pages 131-139.
    5. Tooraj Jamasb & Rabindra Nepal & Govinda Timilsina & Michael Toman, 2014. "Energy Sector Reform, Economic Efficiency and Poverty Reduction," Discussion Papers Series 529, School of Economics, University of Queensland, Australia.
    6. Hengyun Ma & Les Oxley, 2009. "China’s Energy Economy: A Survey of the Literature," Working Papers in Economics 09/02, University of Canterbury, Department of Economics and Finance.
    7. Ma, Chunbo & Stern, David I., 2016. "Long-run estimates of interfuel and interfactor elasticities," Resource and Energy Economics, Elsevier, vol. 46(C), pages 114-130.
    8. Fu, Tong & Jian, Ze, 2020. "A developmental state: How to allocate electricity efficiently in a developing country," Energy Policy, Elsevier, vol. 138(C).
    9. Chen, Zhe & Song, Pei & Wang, Baolu, 2021. "Carbon emissions trading scheme, energy efficiency and rebound effect – Evidence from China's provincial data," Energy Policy, Elsevier, vol. 157(C).
    10. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    11. Yu, Yantuan & Tang, Kai, 2023. "Does financial inclusion improve energy efficiency?," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    12. Li, Jianglong & Lin, Boqiang, 2017. "Does energy and CO2 emissions performance of China benefit from regional integration?," Energy Policy, Elsevier, vol. 101(C), pages 366-378.
    13. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Gradual reforms and the emergence of energy market in China: Evidence from tests for convergence of energy prices," Energy Policy, Elsevier, vol. 37(11), pages 4834-4850, November.
    14. Tooraj Jamasb & Rabindra Nepal & Govinda R. Timilsina, 2017. "A Quarter Century Effort Yet to Come of Age: A Survey of Electricity Sector Reform in Developing Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    15. Xufeng Su & Xiaodong Yang & Jinning Zhang & Jinling Yan & Junfeng Zhao & Jianliang Shen & Qiying Ran, 2021. "Analysis of the Impacts of Economic Growth Targets and Marketization on Energy Efficiency: Evidence from China," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    16. Zha, Donglan & Ding, Ning, 2014. "Elasticities of substitution between energy and non-energy inputs in China power sector," Economic Modelling, Elsevier, vol. 38(C), pages 564-571.
    17. Liao, Hua & Wei, Yi-Ming, 2010. "China's energy consumption: A perspective from Divisia aggregation approach," Energy, Elsevier, vol. 35(1), pages 28-34.
    18. Guo, Jinyu & Ma, Jinji & Li, Zhengqiang & Hong, Jin, 2022. "Building a top-down method based on machine learning for evaluating energy intensity at a fine scale," Energy, Elsevier, vol. 255(C).
    19. Jamasb,Tooraj & Nepal,Rabindra & Timilsina,Govinda R., 2015. "A quarter century effort yet to come of age : a survey of power sector reforms in developing countries," Policy Research Working Paper Series 7330, The World Bank.
    20. Peihao Lai & Minzhe Du & Bing Wang & Ziyue Chen, 2016. "Assessment and Decomposition of Total Factor Energy Efficiency: An Evidence Based on Energy Shadow Price in China," Sustainability, MDPI, vol. 8(5), pages 1-23, April.
    21. Herrerias, M.J. & Cuadros, A. & Orts, V., 2013. "Energy intensity and investment ownership across Chinese provinces," Energy Economics, Elsevier, vol. 36(C), pages 286-298.
    22. Feng Wang & Yijie Jiang & Wulin Zhang & Fang Yang, 2019. "Elasticity of factor substitution and driving factors of energy intensity in China’s industry," Energy & Environment, , vol. 30(3), pages 385-407, May.
    23. Fu, Tong & Chang, Dongfeng & Miao, Chenglin, 2022. "Fuel regulation in a developing country: An interventional perspective," Energy Economics, Elsevier, vol. 113(C).
    24. Pu-yan Nie, 2012. "A monopoly with pollution emissions," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 55(6), pages 705-711, September.
    25. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    26. Khayyat, Nabaz T. & Heshmati, Almas, 2014. "Production Risk, Energy Use Efficiency and Productivity of Korean Industries," Working Paper Series in Economics and Institutions of Innovation 359, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    27. Zhou, Zhongbing & Qin, Quande & Wei, Yi-Ming, 2020. "Government intervention in energy conservation: Justification and warning," Energy Economics, Elsevier, vol. 90(C).
    28. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    29. Rabindra Nepal & Tooraj Jamasb & Clement Allan Tisdell, 2014. "Market-related reforms and increased energy efficiency in transition countries: empirical evidence," Applied Economics, Taylor & Francis Journals, vol. 46(33), pages 4125-4136, November.
    30. Lu, Shenghua & Wang, Hui, 2022. "Market-oriented reform and land use efficiency: Evidence from a regression discontinuity design," Land Use Policy, Elsevier, vol. 115(C).
    31. Xiaoli, Zhao & Rui, Yang & Qian, Ma, 2014. "China's total factor energy efficiency of provincial industrial sectors," Energy, Elsevier, vol. 65(C), pages 52-61.
    32. Kahrl, Fredrich & Roland-Holst, David, 2009. "Growth and structural change in China's energy economy," Energy, Elsevier, vol. 34(7), pages 894-903.
    33. Pu-Yan Nie, 2013. "Innovation considering Pollution Emission and Energy Input," Energy & Environment, , vol. 24(6), pages 953-964, October.
    34. Xiaohua Song & Caiping Zhao & Jingjing Han & Qi Zhang & Jinpeng Liu & Yuanying Chi, 2020. "Measurement and Influencing Factors Research of the Energy and Power Efficiency in China: Based on the Supply-Side Structural Reform Perspective," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
    35. Zhiwen He & Wenwu Xing & Yongxiu Chen, 2021. "Marketization, Industrial Structure Upgrading, and Energy Efficiency," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 2(2), pages 1-5.
    36. Kong, Yuan & Feng, Chao & Yang, Jun, 2020. "How does China manage its energy market? A perspective of policy evolution," Energy Policy, Elsevier, vol. 147(C).
    37. Smyth, Russell & Narayan, Paresh Kumar & Shi, Hongliang, 2011. "Substitution between energy and classical factor inputs in the Chinese steel sector," Applied Energy, Elsevier, vol. 88(1), pages 361-367, January.
    38. Liao, Hua & Fan, Ying & Wei, Yi-Ming, 2007. "What induced China's energy intensity to fluctuate: 1997-2006?," Energy Policy, Elsevier, vol. 35(9), pages 4640-4649, September.
    39. Dai, Xiaoyong & Cheng, Liwei, 2016. "Market distortions and aggregate productivity: Evidence from Chinese energy enterprises," Energy Policy, Elsevier, vol. 95(C), pages 304-313.
    40. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    41. Lin, Boqiang & Xie, Chunping, 2014. "Energy substitution effect on transport industry of China-based on trans-log production function," Energy, Elsevier, vol. 67(C), pages 213-222.
    42. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    43. Shiyi Chen, 2009. "Engine or drag: Can high energy consumption and CO 2 emission drive the sustainable development of Chinese industry?," Frontiers of Economics in China, Springer;Higher Education Press, vol. 4(4), pages 548-571, December.
    44. Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
    45. Wang, Qiang & Qiu, Huan-Ning & Kuang, Yaoqiu, 2009. "Market-driven energy pricing necessary to ensure China's power supply," Energy Policy, Elsevier, vol. 37(7), pages 2498-2504, July.
    46. Nepal, Rabindra, 2011. "Energy efficiency in transition: do market-oriented economic reforms matter?," MPRA Paper 33349, University Library of Munich, Germany.
    47. Du, Gang & Sun, Chuanwang & Fang, Zhongnan, 2015. "Evaluating the Atkinson index of household energy consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1080-1087.
    48. Ke Xu & Peiya Zhao, 2023. "Does Green Finance Promote Green Total Factor Productivity? Empirical Evidence from China," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    49. Lin, Boqiang & Chen, Xing, 2020. "How technological progress affects input substitution and energy efficiency in China: A case of the non-ferrous metals industry," Energy, Elsevier, vol. 206(C).
    50. Chen, Xiude & Qin, Quande & Wei, Y.-M., 2016. "Energy productivity and Chinese local officials’ promotions: Evidence from provincial governors," Energy Policy, Elsevier, vol. 95(C), pages 103-112.
    51. Yang, Mian & Yang, Fu-Xia & Chen, Xing-Peng, 2011. "Effects of substituting energy with capital on China's aggregated energy and environmental efficiency," Energy Policy, Elsevier, vol. 39(10), pages 6065-6072, October.
    52. Wang, Xin, 2011. "On China's energy intensity statistics: Toward a comprehensive and transparent indicator," Energy Policy, Elsevier, vol. 39(11), pages 7284-7289.
    53. Liang, Sai & Zhang, Tianzhu, 2011. "Interactions of energy technology development and new energy exploitation with water technology development in China," Energy, Elsevier, vol. 36(12), pages 6960-6966.
    54. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Substitution possibilities and determinants of energy intensity for China," Energy Policy, Elsevier, vol. 37(5), pages 1793-1804, May.
    55. Sun, Qi & Xu, Lin & Yin, Hua, 2016. "Energy pricing reform and energy efficiency in China: Evidence from the automobile market," Resource and Energy Economics, Elsevier, vol. 44(C), pages 39-51.
    56. Kusaka, Wakana & Kojima, Michikazu & Watanabe, Mariko, 2012. "Environmental consciousness, economic gain and consumer choice of energy efficient appliances in Thailand, China and India," IDE Discussion Papers 345, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    57. Feng, Shenghao & Zhang, Keyu, 2018. "Fuel-factor nesting structures in CGE models of China," Energy Economics, Elsevier, vol. 75(C), pages 274-284.
    58. Jianglong Li & Zhi Li, 2018. "Understanding the role of economic transition in enlarging energy price elasticity," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 26(2), pages 253-281, April.
    59. Haishu Qiao & Ying Li & Julien Chevallier & Bangzhu Zhu, 2016. "Capital–energy substitution in China: regional differences and dynamic evolution," Post-Communist Economies, Taylor & Francis Journals, vol. 28(4), pages 421-435, October.
    60. Lee, Chien-Chiang & He, Zhi-Wen, 2022. "Natural resources and green economic growth: An analysis based on heterogeneous growth paths," Resources Policy, Elsevier, vol. 79(C).
    61. Zhu, Junpeng & Lin, Boqiang, 2022. "Resource dependence, market-oriented reform, and industrial transformation: Empirical evidence from Chinese cities," Resources Policy, Elsevier, vol. 78(C).
    62. Yanjie Zhu & Les Oxley & Hengyun Ma & Wenchao Wang, 2016. "The emergence of convergent price clusters in China," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 24(1), pages 69-98, January.
    63. Zhou, Anhua & Li, Jun, 2021. "Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China’s provincial-level data," Energy, Elsevier, vol. 228(C).
    64. Rabindra Nepal & Tooraj Jamasb, 2013. "Energy efficiency in Market vs Planned Economies: Evidence from Transition Countries," Cambridge Working Papers in Economics 1345, Faculty of Economics, University of Cambridge.
    65. Mian Yang & Zheng Hu & Jiahai Yuan, 2016. "The recent history and successes of China's energy efficiency policy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(6), pages 715-730, November.
    66. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "China's energy situation in the new millennium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1781-1799, October.
    67. Xueqin Lin & Dai Wang & Yuefang Si, 2015. "Spatially Differentiated Features of Coal Resource Utilisation Efficiency in China," Energy & Environment, , vol. 26(6-7), pages 1129-1145, November.

  54. Wei, Yi-Ming & Liao, Hua & Fan, Ying, 2007. "An empirical analysis of energy efficiency in China's iron and steel sector," Energy, Elsevier, vol. 32(12), pages 2262-2270.

    Cited by:

    1. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
    2. Chang, Ming-Chung, 2016. "Applying the energy productivity index that considers maximized energy reduction on SADC (Southern Africa Development Community) members," Energy, Elsevier, vol. 95(C), pages 313-323.
    3. Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
    4. Fisher-Vanden, Karen & Hu, Yong & Jefferson, Gary & Rock, Michael & Toman, Michael, 2013. "Factors influencing energy intensity in four Chinese industries," Policy Research Working Paper Series 6551, The World Bank.
    5. Bhat, Javed Ahmad & Haider, Salman & Kamaiah, Bandi, 2018. "Interstate energy efficiency of Indian paper industry: A slack-based non-parametric approach," Energy, Elsevier, vol. 161(C), pages 284-298.
    6. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    7. Vlontzos, George & Niavis, Spyros & Manos, Basil, 2014. "A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 91-96.
    8. Zhou, D.Q. & Wang, Qunwei & Su, B. & Zhou, P. & Yao, L.X., 2016. "Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis," Applied Energy, Elsevier, vol. 166(C), pages 201-209.
    9. Yongrok Choi & Hyoung Seok Lee, 2016. "Are Emissions Trading Policies Sustainable? A Study of the Petrochemical Industry in Korea," Sustainability, MDPI, vol. 8(11), pages 1-13, October.
    10. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    11. Yadav, Vinod Kumar & Padhy, N.P. & Gupta, H.O., 2010. "A micro level study of an Indian electric utility for efficiency enhancement," Energy, Elsevier, vol. 35(10), pages 4053-4063.
    12. Zhou, Guanghui & Chung, William & Zhang, Xiliang, 2013. "A study of carbon dioxide emissions performance of China's transport sector," Energy, Elsevier, vol. 50(C), pages 302-314.
    13. Chai, Jian & Guo, Ju-E & Wang, Shou-Yang & Lai, Kin Keung, 2009. "Why does energy intensity fluctuate in China?," Energy Policy, Elsevier, vol. 37(12), pages 5717-5731, December.
    14. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    15. Yang, Wei & Shi, Jinfeng & Qiao, Han & Shao, Yanmin & Wang, Shouyang, 2017. "Regional technical efficiency of Chinese Iron and steel industry based on bootstrap network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 14-24.
    16. Wang, H. & Zhou, D.Q. & Zhou, P. & Zha, D.L., 2012. "Direct rebound effect for passenger transport: Empirical evidence from Hong Kong," Applied Energy, Elsevier, vol. 92(C), pages 162-167.
    17. Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.
    18. Ke Wang & Xueying Yu, 2017. "Industrial Energy and Environment Efficiency of Chinese Cities: An Analysis Based on Range-Adjusted Measure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1023-1042, July.
    19. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    20. Zhou, P. & Ang, B.W. & Zhou, D.Q., 2012. "Measuring economy-wide energy efficiency performance: A parametric frontier approach," Applied Energy, Elsevier, vol. 90(1), pages 196-200.
    21. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    22. Miura, Taiki & Tamaki, Tetsuya & Kii, Masanobu & Kajitani, Yoshio, 2021. "Efficiency by sectors in areas considering CO2 emissions: The case of Japan," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 514-528.
    23. Chia-Jung Tu & Ming-Chung Chang & Chiang-Ping Chen, 2016. "Progressive Time-Weighted Dynamic Energy Efficiency, Energy Decoupling Rate, and Decarbonization: An Empirical Study on G7 and BRICS," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    24. Hepburn, Cameron & Teytelboym, Alexander & Cohen, Francois, 2018. "Is Natural Capital Really Substitutable?," INET Oxford Working Papers 2018-12, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    25. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    26. Blomberg, Jerry & Henriksson, Eva & Lundmark, Robert, 2012. "Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach," Energy Policy, Elsevier, vol. 42(C), pages 569-579.
    27. Liu, Hong-Tao & Guo, Ju-E & Qian, Dong & Xi, You-Min, 2009. "Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis," Energy Policy, Elsevier, vol. 37(8), pages 3194-3204, August.
    28. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    29. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    30. Sun, Jiasen & Li, Guo & Wang, Zhaohua, 2018. "Optimizing China’s energy consumption structure under energy and carbon constraints," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 57-72.
    31. Quande Qin & Xin Li & Li Li & Wei Zhen & Yi-Ming Wei, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China's coastal areas," CEEP-BIT Working Papers 98, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    32. Cui, Qiang & Li, Ye, 2015. "An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries," Applied Energy, Elsevier, vol. 141(C), pages 209-217.
    33. Lin, Boqiang & Bai, Rui, 2020. "Dynamic energy performance evaluation of Chinese textile industry," Energy, Elsevier, vol. 199(C).
    34. Chang, Ming-Chung, 2020. "An application of total-factor energy efficiency under the metafrontier framework," Energy Policy, Elsevier, vol. 142(C).
    35. Li, Ke & Lin, Boqiang, 2015. "The efficiency improvement potential for coal, oil and electricity in China's manufacturing sectors," Energy, Elsevier, vol. 86(C), pages 403-413.
    36. Opeyemi Akinyemi & Philip O. Alege & Oluseyi O. Ajayi & Lloyd Amaghionyeodiwe & Adeyemi A. Ogundipe, 2015. "Fuel Subsidy Reform and Environmental Quality in Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 540-549.
    37. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    38. Yongrok Choi & Hyoung Seok Lee & Ahmed Mastur, 2019. "Are Sustainable Development Policies Really Feasible? Focused on the Petrochemical Industry in Korea," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    39. Bei He & Xiaoyun Du & Junkang Li & Dan Chen, 2023. "A Effectiveness-and Efficiency-Based Improved Approach for Measuring Ecological Well-Being Performance in China," IJERPH, MDPI, vol. 20(3), pages 1-29, January.
    40. Mandal, Sabuj Kumar, 2010. "Do undesirable output and environmental regulation matter in energy efficiency analysis? Evidence from Indian Cement Industry," Energy Policy, Elsevier, vol. 38(10), pages 6076-6083, October.
    41. Wang, Qunwei & Zhou, Peng & Zhou, Dequn, 2012. "Efficiency measurement with carbon dioxide emissions: The case of China," Applied Energy, Elsevier, vol. 90(1), pages 161-166.
    42. Cui, Qiang & Kuang, Hai-bo & Wu, Chun-you & Li, Ye, 2014. "The changing trend and influencing factors of energy efficiency: The case of nine countries," Energy, Elsevier, vol. 64(C), pages 1026-1034.
    43. Liao, Hua & Wei, Yi-Ming, 2010. "China's energy consumption: A perspective from Divisia aggregation approach," Energy, Elsevier, vol. 35(1), pages 28-34.
    44. Fan, Jing-Li & Hou, Yun-Bing & Wang, Qian & Wang, Ce & Wei, Yi-Ming, 2016. "Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison," Applied Energy, Elsevier, vol. 184(C), pages 790-799.
    45. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    46. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    47. Lee, Hyoungsuk & Choi, Yongrok, 2018. "Greenhouse gas performance of Korean local governments based on non-radial DDF," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 13-21.
    48. Marlene Arens & Ernst Worrell & Joachim Schleich, 2012. "Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007," Grenoble Ecole de Management (Post-Print) hal-00805730, HAL.
    49. Barros, Carlos Pestana & Managi, Shunsuke, 2009. "Productivity assessment of Angola's oil blocks," Energy, Elsevier, vol. 34(11), pages 2009-2015.
    50. Makridou, Georgia & Andriosopoulos, Kostas & Doumpos, Michael & Zopounidis, Constantin, 2016. "Measuring the efficiency of energy-intensive industries across European countries," Energy Policy, Elsevier, vol. 88(C), pages 573-583.
    51. Tijun Fan & Ruiling Luo & Haiyang Xia & Xiaopeng Li, 2015. "Using LMDI method to analyze the influencing factors of carbon emissions in China’s petrochemical industries," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 319-332, February.
    52. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    53. Qiang Cui, 2017. "Environmental efficiency measures for ports: an application of RAM-Tobit-RAM with undesirable outputs," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(5), pages 551-564, July.
    54. Fujii, Hidemichi & Kaneko, Shinji & Managi, Shunsuke, 2010. "Changes in environmentally sensitive productivity and technological modernization in China's iron and steel industry in the 1990s," Environment and Development Economics, Cambridge University Press, vol. 15(4), pages 485-504, August.
    55. Bian, Yiwen & He, Ping & Xu, Hao, 2013. "Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach," Energy Policy, Elsevier, vol. 63(C), pages 962-971.
    56. Chen, Wenying & Yin, Xiang & Ma, Ding, 2014. "A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 136(C), pages 1174-1183.
    57. Leonardo Leoni & Alessandra Cantini & Filippo De Carlo & Marcello Salvio & Chiara Martini & Claudia Toro & Fabrizio Martini, 2021. "Energy-Saving Technology Opportunities and Investments of the Italian Foundry Industry," Energies, MDPI, vol. 14(24), pages 1-29, December.
    58. Sueyoshi, Toshiyuki & Yuan, Yan, 2015. "China's regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution," Energy Economics, Elsevier, vol. 49(C), pages 239-256.
    59. Surakiat PARICHATNON & Kamonthip MAICHUM & Ke-Chung PENG, 2018. "Measuring technical efficiency of Thai rubber production using the three-stage data envelopment analysis," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(5), pages 227-240.
    60. Andrews-Speed, Philip, 2009. "China's ongoing energy efficiency drive: Origins, progress and prospects," Energy Policy, Elsevier, vol. 37(4), pages 1331-1344, April.
    61. Wang, Yufei & Li, Huimin & Song, Qijiao & Qi, Ye, 2017. "The consequence of energy policies in China: A case study of the iron and steel sector," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 66-73.
    62. Yongrok Choi, 2018. "The Asian Values of Guānxì as an Economic Model for Transition toward Green Growth," Sustainability, MDPI, vol. 10(7), pages 1-20, June.
    63. Wang, Zhaohua & Feng, Chao, 2015. "Sources of production inefficiency and productivity growth in China: A global data envelopment analysis," Energy Economics, Elsevier, vol. 49(C), pages 380-389.
    64. Xia, X.H. & Huang, G.T. & Chen, G.Q. & Zhang, Bo & Chen, Z.M. & Yang, Q., 2011. "Energy security, efficiency and carbon emission of Chinese industry," Energy Policy, Elsevier, vol. 39(6), pages 3520-3528, June.
    65. Wang, H. & Zhou, P. & Zhou, D.Q., 2013. "Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis," Energy Economics, Elsevier, vol. 40(C), pages 795-803.
    66. Shenglang Yang, 2016. "Intangible capital and sectoral energy intensity: Evidence from 40 economies," ANU Working Papers in Economics and Econometrics 2016-646, Australian National University, College of Business and Economics, School of Economics.
    67. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    68. Xiaoli, Zhao & Rui, Yang & Qian, Ma, 2014. "China's total factor energy efficiency of provincial industrial sectors," Energy, Elsevier, vol. 65(C), pages 52-61.
    69. Ouyang, Xiaoling & Wei, Xiaoyun & Sun, Chuanwang & Du, Gang, 2018. "Impact of factor price distortions on energy efficiency: Evidence from provincial-level panel data in China," Energy Policy, Elsevier, vol. 118(C), pages 573-583.
    70. Tajudeen, Ibrahim A., 2021. "The underlying drivers of economy-wide energy efficiency and asymmetric energy price responses," Energy Economics, Elsevier, vol. 98(C).
    71. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    72. Taskin, Dilvin & Dogan, Eyup & Madaleno, Mara, 2022. "Analyzing the relationship between energy efficiency and environmental and financial variables: A way towards sustainable development," Energy, Elsevier, vol. 252(C).
    73. Yongrok Choi & Yanni Yu & Hyoung Seok Lee, 2018. "A Study on the Sustainable Performance of the Steel Industry in Korea Based on SBM-DEA," Sustainability, MDPI, vol. 10(1), pages 1-15, January.
    74. Yu-Ying Lin, Eugene & Chen, Ping-Yu & Chen, Chi-Chung, 2013. "Measuring green productivity of country: A generlized metafrontier Malmquist productivity index approach," Energy, Elsevier, vol. 55(C), pages 340-353.
    75. Sabuj Kumar Mandal & S Madheswaran, 2009. "Measuring Energy Use Efficiency in Presence of Undesirable Output: An Application of Data Envelopment Analysis (DEA) to Indian Cement Industry," Working Papers 235, Institute for Social and Economic Change, Bangalore.
    76. Kangjuan Lv & Anyu Yu & Yiwen Bian, 2017. "Regional energy efficiency and its determinants in China during 2001–2010: a slacks-based measure and spatial econometric analysis," Journal of Productivity Analysis, Springer, vol. 47(1), pages 65-81, February.
    77. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    78. Smyth, Russell & Narayan, Paresh Kumar & Shi, Hongliang, 2011. "Substitution between energy and classical factor inputs in the Chinese steel sector," Applied Energy, Elsevier, vol. 88(1), pages 361-367, January.
    79. P. Zhou & F. Wu & D. Q. Zhou, 2017. "Total-factor energy efficiency with congestion," Annals of Operations Research, Springer, vol. 255(1), pages 241-256, August.
    80. Shao, Liuguo & He, Yingying & Feng, Chao & Zhang, Shijing, 2016. "An empirical analysis of total-factor productivity in 30 sub-sub-sectors of China's nonferrous metal industry," Resources Policy, Elsevier, vol. 50(C), pages 264-269.
    81. Xiaoyang Zhou & Hao Chen & Hao Wang & Benjamin Lev & Lifang Quan, 2019. "Natural and Managerial Disposability Based DEA Model for China’s Regional Environmental Efficiency Assessment," Energies, MDPI, vol. 12(18), pages 1-20, September.
    82. Lin, Boqiang & Xu, Mengmeng, 2018. "Regional differences on CO2 emission efficiency in metallurgical industry of China," Energy Policy, Elsevier, vol. 120(C), pages 302-311.
    83. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    84. Shiyi Chen, 2009. "Engine or drag: Can high energy consumption and CO 2 emission drive the sustainable development of Chinese industry?," Frontiers of Economics in China, Springer;Higher Education Press, vol. 4(4), pages 548-571, December.
    85. Cui, Qiang & Li, Ye, 2015. "Evaluating energy efficiency for airlines: An application of VFB-DEA," Journal of Air Transport Management, Elsevier, vol. 44, pages 34-41.
    86. Zhang, Ning & Wang, Bing & Liu, Zhu, 2016. "Carbon emissions dynamics, efficiency gains, and technological innovation in China's industrial sectors," Energy, Elsevier, vol. 99(C), pages 10-19.
    87. Wu, Ya & Su, JingRong & Li, Ke & Sun, Chuanwang, 2019. "Comparative study on power efficiency of China's provincial steel industry and its influencing factors," Energy, Elsevier, vol. 175(C), pages 1009-1020.
    88. Kuang, Yunming & Lin, Boqiang, 2022. "Natural gas resource utilization, environmental policy and green economic development: Empirical evidence from China," Resources Policy, Elsevier, vol. 79(C).
    89. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    90. Yiwen Bian & Kangjuan Lv & Anyu Yu, 2017. "China’s regional energy and carbon dioxide emissions efficiency evaluation with the presence of recovery energy: an interval slacks-based measure approach," Annals of Operations Research, Springer, vol. 255(1), pages 301-321, August.
    91. Nuri Ozgur DOGAN & Can Tansel TUGCU, 2015. "Energy Efficiency in Electricity Production: A Data Envelopment Analysis (DEA) Approach for the G-20 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 246-252.
    92. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
    93. Juan Carlos Cuestas & Bo Tang, 2015. "Asymmetric Exchange Rate Exposure of Stock Returns: Empirical Evidence from Chinese Industries," Working Papers 2015021, The University of Sheffield, Department of Economics.
    94. Fang, Hong & Wu, Junjie & Zeng, Catherine, 2009. "Comparative study on efficiency performance of listed coal mining companies in China and the US," Energy Policy, Elsevier, vol. 37(12), pages 5140-5148, December.
    95. Hasanbeigi, Ali & Morrow, William & Sathaye, Jayant & Masanet, Eric & Xu, Tengfang, 2013. "A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry," Energy, Elsevier, vol. 50(C), pages 315-325.
    96. Russell Smyth & Paresh Kumar Narayan & Hongliang Shi, 2010. "Inter-fuel Substitution in the Chinese Iron and Steel Sector," Monash Economics Working Papers 22-10, Monash University, Department of Economics.
    97. He, Feng & Zhang, Qingzhi & Lei, Jiasu & Fu, Weihui & Xu, Xiaoning, 2013. "Energy efficiency and productivity change of China’s iron and steel industry: Accounting for undesirable outputs," Energy Policy, Elsevier, vol. 54(C), pages 204-213.
    98. Duygu CEYLAN & E. NUR OZKAN GUNAY, 2010. "Energy Efficiency Trends and Policies: Cross-Country Comparison in Europe," EcoMod2010 259600038, EcoMod.
    99. Wang, Zhaohua & Feng, Chao, 2015. "A performance evaluation of the energy, environmental, and economic efficiency and productivity in China: An application of global data envelopment analysis," Applied Energy, Elsevier, vol. 147(C), pages 617-626.
    100. Chen, Zhenling & Li, Jinkai & Zhao, Weigang & Yuan, Xiao-Chen & Yang, Guo-liang, 2019. "Undesirable and desirable energy congestion measurements for regional coal-fired power generation industry in China," Energy Policy, Elsevier, vol. 125(C), pages 122-134.
    101. Xu, Mengmeng & Lin, Boqiang, 2022. "Energy efficiency gains from distortion mitigation: A perspective on the metallurgical industry," Resources Policy, Elsevier, vol. 77(C).
    102. Li, Ke & Lin, Boqiang, 2016. "Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model," Applied Energy, Elsevier, vol. 168(C), pages 351-363.
    103. Xia, X.H. & Chen, G.Q., 2012. "Energy abatement in Chinese industry: Cost evaluation of regulation strategies and allocation alternatives," Energy Policy, Elsevier, vol. 45(C), pages 449-458.
    104. Long, Xingle & Sun, Mei & Cheng, Faxin & Zhang, Jijian, 2017. "Convergence analysis of eco-efficiency of China’s cement manufacturers through unit root test of panel data," Energy, Elsevier, vol. 134(C), pages 709-717.
    105. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    106. Dong, Huijuan & Geng, Yong & Xi, Fengming & Fujita, Tsuyoshi, 2013. "Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach," Energy Policy, Elsevier, vol. 57(C), pages 298-307.
    107. Nicholas Apergis & Goodness C. Aye & Carlos P. Barros & Rangan Gupta & Peter Wanke, 2014. "Energy Efficiency of Selected OECD Countries: A Slacks Based Model with Undesirable Outputs," Working Papers 201477, University of Pretoria, Department of Economics.
    108. Wang, Zhaohua & Feng, Chao & Zhang, Bin, 2014. "An empirical analysis of China's energy efficiency from both static and dynamic perspectives," Energy, Elsevier, vol. 74(C), pages 322-330.
    109. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Mohammadi, Ali, 2011. "Optimization of energy consumption and input costs for apple production in Iran using data envelopment analysis," Energy, Elsevier, vol. 36(2), pages 909-916.
    110. Bhadbhade, Navdeep & Zuberi, M. Jibran S. & Patel, Martin K., 2019. "A bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials for the swiss metals sector," Energy, Elsevier, vol. 181(C), pages 173-186.
    111. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    112. Fukuyama, Hirofumi & Song, Yao-yao & Ren, Xian-tong & Yang, Guo-liang, 2022. "Using a novel DEA-based model to investigate capacity utilization of Chinese firms," Omega, Elsevier, vol. 106(C).
    113. Ke Wang & Yi-Ming Wei, 2014. "China's regional industrial energy efficiency and carbon emissions abatement costs," CEEP-BIT Working Papers 64, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    114. Wang, Qunwei & Zhao, Zengyao & Zhou, Peng & Zhou, Dequn, 2013. "Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 35(C), pages 283-289.
    115. Ansari, Nastaran & Seifi, Abbas, 2012. "A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry," Energy, Elsevier, vol. 43(1), pages 334-343.
    116. Song, Yi & Huang, Jian-Bai & Feng, Chao, 2018. "Decomposition of energy-related CO2 emissions in China's iron and steel industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 59(C), pages 103-116.
    117. Wang, Shanyong & Wang, Jing & Wang, Wenfu, 2023. "Do geopolitical risks facilitate the global energy transition? Evidence from 39 countries in the world," Resources Policy, Elsevier, vol. 85(PB).
    118. Lin, Boqiang & Du, Kerui, 2014. "Measuring energy efficiency under heterogeneous technologies using a latent class stochastic frontier approach: An application to Chinese energy economy," Energy, Elsevier, vol. 76(C), pages 884-890.
    119. Zhang, Ning & Zhou, Peng & Kung, Chih-Chun, 2015. "Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 584-593.
    120. Zhang, Xing-Ping & Cheng, Xiao-Mei & Yuan, Jia-Hai & Gao, Xiao-Jun, 2011. "Total-factor energy efficiency in developing countries," Energy Policy, Elsevier, vol. 39(2), pages 644-650, February.
    121. Chiang-Ping Chen & Ming-Chung Chang & Wei-Che Tsai, 2021. "Dynamic Energy Efficiency, Energy Decoupling Rate, and Decarbonization: Evidence from ASEAN+6," SAGE Open, , vol. 11(3), pages 21582440211, September.
    122. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    123. Nielsen, Hana, 2017. "Productive efficiency in the iron and steel sector under state planning: The case of China and former Czechoslovakia in a comparative perspective," Applied Energy, Elsevier, vol. 185(P2), pages 1732-1743.
    124. Zhang, Dongyang, 2021. "Marketization, environmental regulation, and eco-friendly productivity: A Malmquist–Luenberger index for pollution emissions of large Chinese firms," Journal of Asian Economics, Elsevier, vol. 76(C).
    125. Tongpool, Rungnapa & Jirajariyavech, Athiwatr & Yuvaniyama, Chantana & Mungcharoen, Thumrongrut, 2010. "Analysis of steel production in Thailand: Environmental impacts and solutions," Energy, Elsevier, vol. 35(10), pages 4192-4200.
    126. Zhihai Yang & Dong Wang & Tianyi Du & Anlu Zhang & Yixiao Zhou, 2018. "Total-Factor Energy Efficiency in China’s Agricultural Sector: Trends, Disparities and Potentials," Energies, MDPI, vol. 11(4), pages 1-16, April.
    127. Yang, Shenglang & Shi, Xunpeng, 2018. "Intangible capital and sectoral energy intensity: Evidence from 40 economies between 1995 and 2007," Energy Policy, Elsevier, vol. 122(C), pages 118-128.
    128. Yongrok Choi & Dong-hyun Oh & Ning Zhang, 2015. "Environmentally sensitive productivity growth and its decompositions in China: a metafrontier Malmquist–Luenberger productivity index approach," Empirical Economics, Springer, vol. 49(3), pages 1017-1043, November.
    129. Zhou, Kaile & Yang, Shanlin, 2016. "Emission reduction of China׳s steel industry: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 319-327.
    130. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    131. Akihiro Otsuka, 2020. "How do population agglomeration and interregional networks improve energy efficiency?," Asia-Pacific Journal of Regional Science, Springer, vol. 4(1), pages 1-25, February.
    132. Zhu, Lei & Zhang, Xiao-Bing & Li, Yuan & Wang, Xu & Guo, Jianxin, 2017. "Can an emission trading scheme promote the withdrawal of outdated capacity in energy-intensive sectors? A case study on China's iron and steel industry," Energy Economics, Elsevier, vol. 63(C), pages 332-347.
    133. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
    134. Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.

  55. Liao, Hua & Fan, Ying & Wei, Yi-Ming, 2007. "What induced China's energy intensity to fluctuate: 1997-2006?," Energy Policy, Elsevier, vol. 35(9), pages 4640-4649, September.

    Cited by:

    1. Zhu, Yongbin & Shi, Yajuan & Wang, Zheng, 2014. "How much CO2 emissions will be reduced through industrial structure change if China focuses on domestic rather than international welfare?," Energy, Elsevier, vol. 72(C), pages 168-179.
    2. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    3. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    4. Chai, Jian & Guo, Ju-E & Wang, Shou-Yang & Lai, Kin Keung, 2009. "Why does energy intensity fluctuate in China?," Energy Policy, Elsevier, vol. 37(12), pages 5717-5731, December.
    5. Yuancheng Lin & Chinhao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015," Energies, MDPI, vol. 14(8), pages 1-27, April.
    6. Chao Bi & Minna Jia & Jingjing Zeng, 2019. "Nonlinear Effect of Public Infrastructure on Energy Intensity in China: A Panel Smooth Transition Regression Approach," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
    7. Xie, Shi-Chen, 2014. "The driving forces of China׳s energy use from 1992 to 2010: An empirical study of input–output and structural decomposition analysis," Energy Policy, Elsevier, vol. 73(C), pages 401-415.
    8. Ke Wang & Xueying Yu, 2017. "Industrial Energy and Environment Efficiency of Chinese Cities: An Analysis Based on Range-Adjusted Measure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1023-1042, July.
    9. Yuan, Jiahai & Kang, Junjie & Yu, Cong & Hu, Zhaoguang, 2011. "Energy conservation and emissions reduction in China—Progress and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4334-4347.
    10. Kahrl, Fredrich & Roland-Holst, David & Zilberman, David, 2013. "Past as Prologue? Understanding energy use in post-2002 China," Energy Economics, Elsevier, vol. 36(C), pages 759-771.
    11. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    12. Hengyun Ma & Les Oxley, 2009. "China’s Energy Economy: A Survey of the Literature," Working Papers in Economics 09/02, University of Canterbury, Department of Economics and Finance.
    13. Leman ERDAL, 2015. "Determinants of Energy Supply Security: An Econometric Analysis For Turkey," Ege Academic Review, Ege University Faculty of Economics and Administrative Sciences, vol. 15(2), pages 153-163.
    14. Silveria, Fernando Castellanos & Luken, Ralph A., 2008. "Global overview of industrial energy intensity," Energy Policy, Elsevier, vol. 36(7), pages 2658-2664, July.
    15. Liao, Hua & Wei, Yi-Ming, 2012. "Will the aggregation approach affect energy efficiency performance assessment?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4537-4542.
    16. Margarida R. Alves & Victor Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
    17. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    18. Jiang, Lei & Folmer, Henk & Ji, Minhe, 2014. "The drivers of energy intensity in China: A spatial panel data approach," China Economic Review, Elsevier, vol. 31(C), pages 351-360.
    19. Qiu Chen & Haoran Yang & Wenguo Wang & Tianbiao Liu, 2019. "Beyond the City: Effects of Urbanization on Rural Residential Energy Intensity and CO 2 Emissions," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    20. Lin Yang & Yunfei Yao & Jiutian Zhang & Xian Zhang & Karl McAlinden, 2016. "A CGE analysis of carbon market impact on CO 2 emission reduction in China: a technology-led approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1107-1128, March.
    21. Geng, Jing & Lu, Yonglong & Wang, Tieyu & Giesy, John P. & Chen, Chunli, 2010. "Effects of energy conservation in major energy-intensive industrial sectors on emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in China," Energy Policy, Elsevier, vol. 38(5), pages 2346-2356, May.
    22. Li, Yi & Sun, Linyan & Feng, Taiwen & Zhu, Chunyan, 2013. "How to reduce energy intensity in China: A regional comparison perspective," Energy Policy, Elsevier, vol. 61(C), pages 513-522.
    23. Yuxiang, Karl & Chen, Zhongchang, 2010. "Government expenditure and energy intensity in China," Energy Policy, Elsevier, vol. 38(2), pages 691-694, February.
    24. Liu, Li-Jing & Liang, Qiao-Mei & Creutzig, Felix & Ward, Hauke & Zhang, Kun, 2020. "Sweet spots are in the food system: Structural adjustments to co-control regional pollutants and national GHG emissions in China," Ecological Economics, Elsevier, vol. 171(C).
    25. Liao, Hua & Wei, Yi-Ming, 2010. "China's energy consumption: A perspective from Divisia aggregation approach," Energy, Elsevier, vol. 35(1), pages 28-34.
    26. Zhi-Fu Mi & Su-Yan Pan & Hao Yu & Yi-Ming Wei, 2014. "Potential impacts of industrial structure on energy consumption and CO2 emission: a case study of Beijing," CEEP-BIT Working Papers 51, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    27. Steckel, Jan Christoph & Jakob, Michael & Marschinski, Robert & Luderer, Gunnar, 2011. "From carbonization to decarbonization?--Past trends and future scenarios for China's CO2 emissions," Energy Policy, Elsevier, vol. 39(6), pages 3443-3455, June.
    28. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
    29. Lei Jiang & Minhe Ji, 2016. "China’s Energy Intensity, Determinants and Spatial Effects," Sustainability, MDPI, vol. 8(6), pages 1-15, June.
    30. Sun, Yong & Liu, Baoyin & Sun, Zhongrui & Yang, Ruijia, 2023. "Inter-regional cooperation in the transfers of energy-intensive industry: An evolutionary game approach," Energy, Elsevier, vol. 282(C).
    31. Celil Ayd n & mer Esen, 2017. "Does Too Much Energy Consumption Harm Economic Growth for Turkish Republics in The Transition Process? New Evidence on Threshold Effects," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 34-43.
    32. Yousaf Raza, Muhammad & Lin, Boqiang, 2023. "Development trend of Pakistan's natural gas consumption: A sectorial decomposition analysis," Energy, Elsevier, vol. 278(PA).
    33. Jin Zhang and David C. Broadstock, 2016. "The Causality between Energy Consumption and Economic Growth for China in a Time-varying Framework," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    34. Herrerias, M.J. & Cuadros, A. & Orts, V., 2013. "Energy intensity and investment ownership across Chinese provinces," Energy Economics, Elsevier, vol. 36(C), pages 286-298.
    35. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
    36. Wendong Lv & Xiaoxin Hong & Kuangnan Fang, 2015. "Chinese regional energy efficiency change and its determinants analysis: Malmquist index and Tobit model," Annals of Operations Research, Springer, vol. 228(1), pages 9-22, May.
    37. Ma, Ben, 2015. "Does urbanization affect energy intensities across provinces in China?Long-run elasticities estimation using dynamic panels with heterogeneous slopes," Energy Economics, Elsevier, vol. 49(C), pages 390-401.
    38. Yan, Huijie, 2015. "Provincial energy intensity in China: The role of urbanization," Energy Policy, Elsevier, vol. 86(C), pages 635-650.
    39. Andrews-Speed, Philip, 2009. "China's ongoing energy efficiency drive: Origins, progress and prospects," Energy Policy, Elsevier, vol. 37(4), pages 1331-1344, April.
    40. Herrerias, M.J. & Cuadros, A. & Luo, D., 2016. "Foreign versus indigenous innovation and energy intensity: Further research across Chinese regions," Applied Energy, Elsevier, vol. 162(C), pages 1374-1384.
    41. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    42. Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2015. "A comparative study on prediction methods for China's medium- and long-term coal demand," Energy, Elsevier, vol. 93(P2), pages 1671-1683.
    43. Zhang, Dayong & Cao, Hong & Wei, Yi-Ming, 2016. "Identifying the determinants of energy intensity in China: A Bayesian averaging approach," Applied Energy, Elsevier, vol. 168(C), pages 672-682.
    44. Yang, Guangfei & Li, Wenli & Wang, Jianliang & Zhang, Dongqing, 2016. "A comparative study on the influential factors of China's provincial energy intensity," Energy Policy, Elsevier, vol. 88(C), pages 74-85.
    45. Chen, Dengke & Chen, Shiyi & Jin, Hao & Lu, Yulin, 2020. "The impact of energy regulation on energy intensity and energy structure: Firm-level evidence from China," China Economic Review, Elsevier, vol. 59(C).
    46. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
    47. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2012. "A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?," Energy Policy, Elsevier, vol. 46(C), pages 574-584.
    48. Elliott, Robert J.R. & Sun, Puyang & Zhu, Tong, 2017. "The direct and indirect effect of urbanization on energy intensity: A province-level study for China," Energy, Elsevier, vol. 123(C), pages 677-692.
    49. Wei, Chu & Ni, Jinlan & Du, Limin, 2012. "Regional allocation of carbon dioxide abatement in China," China Economic Review, Elsevier, vol. 23(3), pages 552-565.
    50. Kahrl, Fredrich & Roland-Holst, David, 2009. "Growth and structural change in China's energy economy," Energy, Elsevier, vol. 34(7), pages 894-903.
    51. Zhang, Jing & Deng, Shihuai & Shen, Fei & Yang, Xinyao & Liu, Guodong & Guo, Hang & Li, Yuanwei & Hong, Xiao & Zhang, Yanzong & Peng, Hong & Zhang, Xiaohong & Li, Li & Wang, Yingjun, 2011. "Modeling the relationship between energy consumption and economy development in China," Energy, Elsevier, vol. 36(7), pages 4227-4234.
    52. Ouyang, Xiaoling & Chen, Jiaqi & Du, Kerui, 2021. "Energy efficiency performance of the industrial sector: From the perspective of technological gap in different regions in China," Energy, Elsevier, vol. 214(C).
    53. Lei Li & Ting Chi & Meng Zhang & Shi Wang, 2016. "Multi-Layered Capital Subsidy Policy for the PV Industry in China Considering Regional Differences," Sustainability, MDPI, vol. 8(1), pages 1-14, January.
    54. Salim, Ruhul & Yao, Yao & Chen, George & Zhang, Lin, 2017. "Can foreign direct investment harness energy consumption in China? A time series investigation," Energy Economics, Elsevier, vol. 66(C), pages 43-53.
    55. Guy Liu & Liang Zhang & Eric Girardin, 2014. "The Chinese electricity industry: supply capacity and its determinants with reference to OECD countries," Post-Print hal-01474435, HAL.
    56. Smyth, Russell & Narayan, Paresh Kumar & Shi, Hongliang, 2011. "Substitution between energy and classical factor inputs in the Chinese steel sector," Applied Energy, Elsevier, vol. 88(1), pages 361-367, January.
    57. Tang, Erzi & Peng, Chong, 2017. "A macro- and microeconomic analysis of coal production in China," Resources Policy, Elsevier, vol. 51(C), pages 234-242.
    58. Bu, Maoliang & Li, Shuang & Jiang, Lei, 2019. "Foreign direct investment and energy intensity in China: Firm-level evidence," Energy Economics, Elsevier, vol. 80(C), pages 366-376.
    59. Driha, Oana & Cascetta, Furio & Nardini, Sergio & Bianco, Vincenzo, 2023. "Evolution of renewable energy generation in EU27. A decomposition analysis," Renewable Energy, Elsevier, vol. 207(C), pages 348-358.
    60. Li, Huimin & Wu, Tong & Zhao, Xiaofan & Wang, Xiao & Qi, Ye, 2014. "Regional disparities and carbon “outsourcing”: The political economy of China's energy policy," Energy, Elsevier, vol. 66(C), pages 950-958.
    61. Aydin, Celil & Esen, Ömer, 2018. "Does the level of energy intensity matter in the effect of energy consumption on the growth of transition economies? Evidence from dynamic panel threshold analysis," Energy Economics, Elsevier, vol. 69(C), pages 185-195.
    62. Yanrui Wu, 2011. "Energy Intensity and its Determinants in China's Regional Economies," Economics Discussion / Working Papers 11-25, The University of Western Australia, Department of Economics.
    63. Robert J R Elliott & Puyang Sun & Tong Zhu, 2014. "Urbanization and Energy Intensity: A Province-level Study for China," Discussion Papers 14-05, Department of Economics, University of Birmingham.
    64. Nie, Hongguang & Kemp, René, 2014. "Index decomposition analysis of residential energy consumption in China: 2002–2010," Applied Energy, Elsevier, vol. 121(C), pages 10-19.
    65. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    66. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    67. Ma, Chunbo, 2010. "Account for sector heterogeneity in China's energy consumption: Sector price indices vs. GDP deflator," Energy Economics, Elsevier, vol. 32(1), pages 24-29, January.
    68. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng & Wu, Junlong, 2009. "Research on the energy-saving effect of energy policies in China: 1982-2006," Energy Policy, Elsevier, vol. 37(7), pages 2475-2480, July.
    69. Li, Huimin & Zhao, Xiaofan & Yu, Yuqing & Wu, Tong & Qi, Ye, 2016. "China's numerical management system for reducing national energy intensity," Energy Policy, Elsevier, vol. 94(C), pages 64-76.
    70. Lin Yang & Yunfei Yao & Jiutian Zhang & Xian Zhang & Karl J. McAlinden, 2016. "A CGE analysis of carbon market impact on CO2 emission reduction in China: a technology-led approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1107-1128, March.
    71. You, Jing, 2013. "China's challenge for decarbonized growth: Forecasts from energy demand models," Journal of Policy Modeling, Elsevier, vol. 35(4), pages 652-668.
    72. Zhang, Ming & Wang, Wenwen, 2011. "Analysis of China's energy utilization for 2007," Energy Policy, Elsevier, vol. 39(3), pages 1612-1616, March.
    73. Maria J. Herrerias & Eric Girardin, 2013. "Seasonal Patterns of Energy in China," Post-Print hal-01499617, HAL.
    74. Feng, Yidai & Yuan, Huaxi & Liu, Yaobin, 2023. "The energy-saving effect in the new transformation of urbanization," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 41-59.
    75. Amira Ben Hammamia & Ahlem Dakhlaoui & Abdessalem Abbassi, 2014. "Analysis of the Decomposition of Energy Intensity in Tunisia," International Journal of Energy Economics and Policy, Econjournals, vol. 4(3), pages 420-426.
    76. Ding, Wenguang & Xu, Luan & Ye, Weifeng, 2014. "A comparative study of bioenergy consumption and CO2 emissions in Tibetan region of China," Renewable Energy, Elsevier, vol. 71(C), pages 344-350.
    77. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    78. Chen, Xiude & Qin, Quande & Wei, Y.-M., 2016. "Energy productivity and Chinese local officials’ promotions: Evidence from provincial governors," Energy Policy, Elsevier, vol. 95(C), pages 103-112.
    79. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    80. Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Su, Bin & Liu, Yue & Renfei, Xv, 2023. "Embodied energy intensity of global high energy consumption industries: A case study of the construction industry," Energy, Elsevier, vol. 277(C).
    81. Yousaf Raza, Muhammad & Lin, Boqiang, 2022. "Natural gas consumption, energy efficiency and low carbon transition in Pakistan," Energy, Elsevier, vol. 240(C).
    82. Dayong Zhang and David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    83. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    84. Changjian Wang & Fei Wang & Hongou Zhang & Yuyao Ye & Qitao Wu & Yongxian Su, 2014. "Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province," Sustainability, MDPI, vol. 6(11), pages 1-16, November.
    85. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    86. Wang, Xin, 2011. "On China's energy intensity statistics: Toward a comprehensive and transparent indicator," Energy Policy, Elsevier, vol. 39(11), pages 7284-7289.
    87. Liang, Sai & Zhang, Tianzhu, 2011. "Interactions of energy technology development and new energy exploitation with water technology development in China," Energy, Elsevier, vol. 36(12), pages 6960-6966.
    88. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Substitution possibilities and determinants of energy intensity for China," Energy Policy, Elsevier, vol. 37(5), pages 1793-1804, May.
    89. Massimo Filippini & Lin Zhang, 2013. "Measurement of the “Underlying energy efficiency” in Chinese provinces," CER-ETH Economics working paper series 13/183, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    90. Balachandra, P. & Ravindranath, Darshini & Ravindranath, N.H., 2010. "Energy efficiency in India: Assessing the policy regimes and their impacts," Energy Policy, Elsevier, vol. 38(11), pages 6428-6438, November.
    91. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.
    92. Rui Ding & Tao Zhou & Jian Yin & Yilin Zhang & Siwei Shen & Jun Fu & Linyu Du & Yiming Du & Shihui Chen, 2022. "Does the Urban Agglomeration Policy Reduce Energy Intensity? Evidence from China," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    93. Gandhi, Oktoviano & Oshiro, Andre H. & Medeiros Costa, Hirdan Katarina de & Santos, Edmilson M., 2017. "Energy intensity trend explained for Sao Paulo state," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1046-1054.
    94. Yanjie Zhu & Les Oxley & Hengyun Ma & Wenchao Wang, 2016. "The emergence of convergent price clusters in China," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 24(1), pages 69-98, January.
    95. Zhang, Bo & Chen, G.Q., 2010. "Methane emissions by Chinese economy: Inventory and embodiment analysis," Energy Policy, Elsevier, vol. 38(8), pages 4304-4316, August.
    96. Fang, Zheng & Chen, Yang, 2017. "Human capital and energy in economic growth – Evidence from Chinese provincial data," Energy Economics, Elsevier, vol. 68(C), pages 340-358.
    97. Zhang, Jin & Li, Pujiang & Zhao, Guochang, 2018. "Is power generation really the gold measure of the Chinese economy? A conceptual and empirical assessment," Energy Policy, Elsevier, vol. 121(C), pages 211-216.
    98. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
    99. Moutinho, Victor & Robaina-Alves, Margarita & Mota, Jorge, 2014. "Carbon dioxide emissions intensity of Portuguese industry and energy sectors: A convergence analysis and econometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 438-449.
    100. Zhu, Junming & Niu, Limin & Ruth, Matthias & Shi, Lei, 2018. "Technological Change and Energy Efficiency in Large Chinese Firms," Ecological Economics, Elsevier, vol. 150(C), pages 241-250.
    101. Li, Ke & Lin, Boqiang, 2014. "The nonlinear impacts of industrial structure on China's energy intensity," Energy, Elsevier, vol. 69(C), pages 258-265.
    102. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).

Chapters

  1. Hua Liao, . "China Country Report," Chapters, in: Shigeru Kimura (ed.), Analysis on Energy Saving Potential in East Asia Region, chapter 5, pages 97-108, Economic Research Institute for ASEAN and East Asia (ERIA).

    Cited by:

    1. Wang Xiao-jun & Zhang Jian-yun & Shahid Shamsuddin & He Rui-min & Xia Xing-hui & Mou Xin-li, 2015. "Potential impact of climate change on future water demand in Yulin city, Northwest China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(1), pages 1-19, January.
    2. Yi-Xuan Gao & Hua Liao & Paul J. Burke & Yi-Ming Wei, 2014. "Road transport energy consumption in the G7 and BRICS: 1973-2010," CEEP-BIT Working Papers 79, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    3. Hua Liao & Ce Wang & Zhi-Shuang Zhu & Xiao-Wei Ma, 2012. "Structural decomposition analysis on energy intensity changes at regional level," CEEP-BIT Working Papers 40, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    4. Jing-Li Fan & Hua Liao & Bao-Jun Tang & Su-Yan Pan & Hao Yu & Yi-Ming Wei, 2016. "The impacts of migrant workers consumption on energy use and CO 2 emissions in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 725-743, March.
    5. Ke Wang & Shiwei Yu & Mo-Jie Li & Yi-Ming Wei, 2013. "Multi-directional efficiency analysis-based regional industrial environmental performance evaluation of China," CEEP-BIT Working Papers 47, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    6. Hua Liao & Zhao-Yi & Ce Wang, 2013. "Divisia decomposition method and its application to changes of net oil import intensity," CEEP-BIT Working Papers 55, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    7. Qi Li & Ya-Ni Wei & Yanfang Dong, 2016. "Coupling analysis of China’s urbanization and carbon emissions: example from Hubei Province," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1333-1348, March.
    8. Wang, Bing & Ke, Ruo-Yu & Yuan, Xiao-Chen & Wei, Yi-Ming, 2014. "China׳s regional assessment of renewable energy vulnerability to climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 185-195.
    9. Bing Wang & Hua-Nan Li & Xiao-Chen Yuan & Zhen-Ming Sun, 2017. "Energy Poverty in China: A Dynamic Analysis Based on a Hybrid Panel Data Decision Model," Energies, MDPI, vol. 10(12), pages 1-14, November.
    10. Qi Li & Ya-Ni Wei & Yanfang Dong, 2016. "Coupling analysis of China’s urbanization and carbon emissions: example from Hubei Province," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1333-1348, March.
    11. Ce Wang & Hua Liao & Su-Yan Pan & Lu-Tao Zhao & Yi-Ming Wei, 2014. "The fluctuations of China's energy intensity: Biased technical change," CEEP-BIT Working Papers 56, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

Books

  1. Zhimin Huang & Yiming Wei & Ke Wang & Hua Liao (ed.), 2017. "Energy economics and climate policy modeling," CEEP-BIT Books, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology, number b15, december.

    Cited by:

    1. Xu Lei & Tang Shiyun & Deng Yanfei & Yuan Yuan, 2020. "Sustainable operation-oriented investment risk evaluation and optimization for renewable energy project: a case study of wind power in China," Annals of Operations Research, Springer, vol. 290(1), pages 223-241, July.
    2. Laura Laguna-Salvadó & Matthieu Lauras & Uche Okongwu & Tina Comes, 2019. "A multicriteria Master Planning DSS for a sustainable humanitarian supply chain," Annals of Operations Research, Springer, vol. 283(1), pages 1303-1343, December.
    3. Han, Yongming & Lou, Xiaoyi & Feng, Mingfei & Geng, Zhiqiang & Chen, Liangchao & Ping, Weiying & Lu, Gang, 2022. "Energy consumption analysis and saving of buildings based on static and dynamic input-output models," Energy, Elsevier, vol. 239(PC).
    4. Chinnadurai Kathiravan & Murugesan Selvam & Sankaran Venkateswar & S. Balakrishnan, 2021. "Investor behavior and weather factors: evidences from Asian region," Annals of Operations Research, Springer, vol. 299(1), pages 349-373, April.
    5. Chenhao Fang & Tieju Ma, 2021. "Technology adoption with carbon emission trading mechanism: modeling with heterogeneous agents and uncertain carbon price," Annals of Operations Research, Springer, vol. 300(2), pages 577-600, May.

  2. Yi-Ming Wei & Hua Liao (ed.), 2016. "Energy Economics: Energy Efficiency in China," CEEP-BIT Books, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology, number b5, december.

    Cited by:

    1. Sun, Jiasen & Li, Guo & Wang, Zhaohua, 2018. "Optimizing China’s energy consumption structure under energy and carbon constraints," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 57-72.
    2. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    3. Qiurui Liu & Juntian Huang & Ting Ni & Lin Chen, 2022. "Measurement of China’s Building Energy Consumption from the Perspective of a Comprehensive Modified Life Cycle Assessment Statistics Method," Sustainability, MDPI, vol. 14(8), pages 1-19, April.
    4. Ye, Xiang & Yue, Pengpeng, 2023. "Financial literacy and household energy efficiency: An analysis of credit market and supply chain," Finance Research Letters, Elsevier, vol. 52(C).
    5. Song Xu & Yiu Hin Martin Lu & Meiheriayi Mutailipu & Kanti Yan & Yaoli Zhang & Staffan Qvist, 2022. "Repowering Coal Power in China by Nuclear Energy—Implementation Strategy and Potential," Energies, MDPI, vol. 15(3), pages 1-27, January.
    6. Satoshi Honma & Jin-Li Hu, 2018. "A meta-stochastic frontier analysis for energy efficiency of regions in Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-16, December.
    7. Riahi, Fariba & Zahedi, Shams-alsadat & Farjadi, Gholam Ali & Najafi, Saied, 2019. "The Impact of Institutional Governance on Environmental Sustainability of Energy through Economic and Social Sustainabilit (in Persian)," Management and Development Process Quarterly (٠صلنامه ٠رایند مدیریت و توسعه), Institute for Management and Planning studies, vol. 32(2), pages 91-133, September.
    8. Longyu Shi & Lingyu Liu & Bin Yang & Gonghan Sheng & Tong Xu, 2020. "Evaluation of Industrial Urea Energy Consumption (EC) Based on Life Cycle Assessment (LCA)," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    9. Mohamed Dia & Shashi K. Shahi & Luckny Zéphyr, 2021. "An Assessment of the Efficiency of Canadian Power Generation Companies with Bootstrap DEA," JRFM, MDPI, vol. 14(10), pages 1-27, October.
    10. Darwanto Darwanto & Nenik Woyanti & Purbayu Budi Santosa & Hadi Sasana & Imam Ghozali, 2019. "The Damaging Growth: An Empiric Evidence of Environmental Kuznets Curve in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 339-345.

  3. Yiming Wei & Ke Wang & Hua Liao & Hirokazu Tatano (ed.), 2016. "Economics of climate change and risk of disasters in Asia–Pacific region," CEEP-BIT Books, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology, number b13, december.

    Cited by:

    1. Kirsten Halsnæs & Morten Andreas Dahl Larsen & Per Skougaard Kaspersen, 2018. "Climate change risks for severe storms in developing countries in the context of poverty and inequality in Cambodia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 261-278, October.

  4. Kate Penney & Chee Ming Lim & Lilibeth Morales & Lieng Vuthy & Hua Liao & Lieng Vuthy & Hua Liao & Yu Nagatomi & Cecilya Laksmiwati Malik & Khamso Kouphokham & Zaharin Zulkifli & Pe Zin Tun & Momoko A, . "Analysis on Energy Saving Potential in East Asia Region," Books, Economic Research Institute for ASEAN and East Asia (ERIA), number 2011-rpr-18 edited by Shigeru Kimura, July.

    Cited by:

    1. Glenk, Klaus & Schaafsma, Marije & Moxey, Andrew & Martin-Ortega, Julia & Hanley, Nick, 2014. "A framework for valuing spatially targeted peatland restoration," Ecosystem Services, Elsevier, vol. 9(C), pages 20-33.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.