IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i6p2351-d1355646.html
   My bibliography  Save this article

China’s Digital Economy: A Dual Mission of Carbon-Emission Reduction and Efficiency Enhancement

Author

Listed:
  • Xiaodan Gao

    (College of Commerce, Jeonbuk National University, Jeonju 54896, Republic of Korea)

  • Jinbao Li

    (Department of Economics and Finance, Daqing Normal University, Daqing 163712, China)

Abstract

With the introduction of China’s dual carbon goals and the rise of the digital economy as a new model of economic development, the role of the digital economy in achieving green growth is garnering increasing attention. This paper constructs a comprehensive digital economy index, utilizing panel data from 30 provinces in China between 2006 and 2017, and employs the System GMM method to examine the comprehensive impact of the digital economy on low-carbon development from the perspectives of “emission reduction” and “efficiency enhancement”. The primary findings indicate that the digital economy aids China in meeting its dual carbon goals by reducing carbon emissions (CEs) and increasing carbon emissions’ efficiency (CEE). However, this impact varies with different components of the digital economy, and the role of digital finance is limited. This conclusion underscores the necessity of subdividing digital economy indicators. Our conclusions have been substantiated through various robustness checks, including but not limited to the method of distinguishing pure emission reduction from efficiency enhancement. Additionally, our research reveals the dynamic nonlinear effects of the digital economy in promoting emission reduction and efficiency enhancement. Green regulations that exceed a threshold value enhance emission reduction and efficiency, while the impact of sustainable technological innovation may be constrained by changes in policy and market environments. Academically, this study offers a new perspective on the complex relationship between the digital economy and its effectiveness in reducing carbon and enhancing efficiency. From a policy standpoint, it provides insights for China and other countries in advancing energy conservation and emission-reduction initiatives.

Suggested Citation

  • Xiaodan Gao & Jinbao Li, 2024. "China’s Digital Economy: A Dual Mission of Carbon-Emission Reduction and Efficiency Enhancement," Sustainability, MDPI, vol. 16(6), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2351-:d:1355646
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/6/2351/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/6/2351/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    2. Pan, Wenrong & Xie, Tao & Wang, Zhuwang & Ma, Lisha, 2022. "Digital economy: An innovation driver for total factor productivity," Journal of Business Research, Elsevier, vol. 139(C), pages 303-311.
    3. Li, Zhiguo & Wang, Jie, 2022. "Spatial spillover effect of carbon emission trading on carbon emission reduction: Empirical data from pilot regions in China," Energy, Elsevier, vol. 251(C).
    4. Ma, Dan & Zhu, Qing, 2022. "Innovation in emerging economies: Research on the digital economy driving high-quality green development," Journal of Business Research, Elsevier, vol. 145(C), pages 801-813.
    5. Myung Hwan Seo & Sueyoul Kim & Young-Joo Kim, 2019. "Estimation of dynamic panel threshold model using Stata," Stata Journal, StataCorp LP, vol. 19(3), pages 685-697, September.
    6. Asif Razzaq & Arshian Sharif & Paiman Ahmad & Kittisak Jermsittiparsert, 2021. "Asymmetric role of tourism development and technology innovation on carbon dioxide emission reduction in the Chinese economy: Fresh insights from QARDL approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 176-193, January.
    7. Sainan Cheng & Guohua Qu, 2023. "Research on the Effect of Digital Economy on Carbon Emissions under the Background of “Double Carbon”," IJERPH, MDPI, vol. 20(6), pages 1-27, March.
    8. Mohsen Afsharian & Heinz Ahn, 2015. "The overall Malmquist index: a new approach for measuring productivity changes over time," Annals of Operations Research, Springer, vol. 226(1), pages 1-27, March.
    9. Wang, Jianda & Wang, Bo & Dong, Kangyin & Dong, Xiucheng, 2022. "How does the digital economy improve high-quality energy development? The case of China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    10. Shouwu Jing & Feijie Wu & Enyi Shi & Xinhui Wu & Minzhe Du, 2023. "Does the Digital Economy Promote the Reduction of Urban Carbon Emission Intensity?," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
    11. Thorsten Koch & Josef Windsperger, 2017. "Seeing through the network: Competitive advantage in the digital economy," Journal of Organization Design, Springer;Organizational Design Community, vol. 6(1), pages 1-30, December.
    12. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How does ICT agglomeration affect carbon emissions? The case of Yangtze River Delta urban agglomeration in China," Energy Economics, Elsevier, vol. 111(C).
    13. Lin, Boqiang & Ma, Ruiyang, 2022. "Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    14. Sun, Yunpeng & Gao, Pengpeng & Tian, Wenjuan & Guan, Weimin, 2023. "Green innovation for resource efficiency and sustainability: Empirical analysis and policy," Resources Policy, Elsevier, vol. 81(C).
    15. Chenggang Wang & Tiansen Liu & Yue Zhu & Meng Lin & Wenhao Chang & Xinyu Wang & Dongrong Li & He Wang & Jinsol Yoo, 2022. "Digital Economy, Environmental Regulation and Corporate Green Technology Innovation: Evidence from China," IJERPH, MDPI, vol. 19(21), pages 1-18, October.
    16. Gai, Zhiqiang & Guo, Yunxia & Hao, Yu, 2022. "Can internet development help break the resource curse? Evidence from China," Resources Policy, Elsevier, vol. 75(C).
    17. Wang, Chen & Engels, Anita & Wang, Zhaohua, 2018. "Overview of research on China's transition to low-carbon development: The role of cities, technologies, industries and the energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1350-1364.
    18. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).
    19. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    20. Morgan, Cynthia & Pasurka, Carl & Shadbegian, Ron & Belova, Anna & Casey, Brendan, 2023. "Estimating the cost of environmental regulations and technological change with limited information," Ecological Economics, Elsevier, vol. 204(PA).
    21. Soytas, Ugur & Sari, Ramazan & Ewing, Bradley T., 2007. "Energy consumption, income, and carbon emissions in the United States," Ecological Economics, Elsevier, vol. 62(3-4), pages 482-489, May.
    22. Magdalena Rusch & Josef‐Peter Schöggl & Rupert J. Baumgartner, 2023. "Application of digital technologies for sustainable product management in a circular economy: A review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(3), pages 1159-1174, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    2. Guo, Bingnan & Wang, Yu & Zhang, Hao & Liang, Chunyan & Feng, Yu & Hu, Feng, 2023. "Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities," Economic Modelling, Elsevier, vol. 120(C).
    3. Liu, Yang & Dong, Kangyin & Jiang, Qingzhe, 2023. "Assessing energy vulnerability and its impact on carbon emissions: A global case," Energy Economics, Elsevier, vol. 119(C).
    4. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    5. Kangxian Ji & Xiaoting Liu & Jian Xu, 2023. "Digital Economy and the Sustainable Development of China’s Manufacturing Industry: From the Perspective of Industry Performance and Green Development," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    6. Bei Liu & Yukun Li & Xiaoya Tian & Lipeng Sun & Pishi Xiu, 2023. "Can Digital Economy Development Contribute to the Low-Carbon Transition? Evidence from the City Level in China," IJERPH, MDPI, vol. 20(3), pages 1-19, February.
    7. Sebri, Maamar, 2009. "La Zone Méditerranéenne Face à la Pollution de L’air : Une Investigation Econométrique [The Mediterranean Zone in front of Air pollution: an Econometric Investigation]," MPRA Paper 32382, University Library of Munich, Germany.
    8. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    9. Carmen Díaz-Roldán & María del Carmen Ramos-Herrera, 2021. "Innovations and ICT: Do They Favour Economic Growth and Environmental Quality?," Energies, MDPI, vol. 14(5), pages 1-17, March.
    10. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    11. Pei-Ing Wu & Je-Liang Liou & Hung-Yi Chang, 2015. "Alternative exploration of EKC for $$\hbox {CO}_{2}$$ CO 2 emissions: inclusion of meta-technical ratio in quantile regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 57-73, January.
    12. Jin Zhu & Dequn Zhou & Zhengning Pu & Huaping Sun, 2019. "A Study of Regional Power Generation Efficiency in China: Based on a Non-Radial Directional Distance Function Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    13. Acheampong, Alex O., 2019. "Modelling for insight: Does financial development improve environmental quality?," Energy Economics, Elsevier, vol. 83(C), pages 156-179.
    14. Shahbaz, Muhammad & Nasreen, Samia & Ahmed, Khalid & Hammoudeh, Shawkat, 2017. "Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels," Energy Economics, Elsevier, vol. 61(C), pages 221-232.
    15. Kun Wang & Bing Chen & Yuhong Li, 2024. "Technological, process or managerial innovation? How does digital transformation affect green innovation in industrial enterprises?," Economic Change and Restructuring, Springer, vol. 57(1), pages 1-32, February.
    16. Lee, Chien-Chiang & Qin, Shuai & Li, Yaya, 2022. "Does industrial robot application promote green technology innovation in the manufacturing industry?," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    17. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    18. Arash Refah-Kahriz & Hassan Heidari & Mahdiyeh Rahimdel, 2023. "Is there a similar Granger causality among CO2 emissions, energy consumption and economic growth in different regimes in Iran?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3801-3822, April.
    19. Bella, Giovanni & Massidda, Carla & Mattana, Paolo, 2014. "The relationship among CO2 emissions, electricity power consumption and GDP in OECD countries," Journal of Policy Modeling, Elsevier, vol. 36(6), pages 970-985.
    20. Cerdeira Bento, João Paulo, 2014. "The determinants of CO2 emissions: empirical evidence from Italy," MPRA Paper 59166, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2351-:d:1355646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.