IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v81y2023ics0301420723000533.html
   My bibliography  Save this article

Internet development and carbon emission-reduction in the era of digitalization: Where will resource-based cities go?

Author

Listed:
  • Pan, Minjie
  • Zhao, Xin
  • lv, Kangjuan
  • Rosak-Szyrocka, Joanna
  • Mentel, Grzegorz
  • Truskolaski, Tadeusz

Abstract

Since human beings entered the digital era, the economic growth mode, social structure and environment have undergone fundamental changes. Internet industry plays a key role in urban energy transformation and industrial transformation and upgrading. Whether Internet development can effectively contribute to low-carbon urban transformation requires further testing. According to panel data from 283 cities in China, we examine the effect and impact mechanism of Internet evolution on urban carbon emissions. First of all, this study constructs a two-way fixed effects model to test the impact of the Internet on urban carbon emissions. The empirical results show that Internet effectively promote urban low-carbon transition. Then we used a series of robust test, including applying the instrumental variables approach, replacing the explanatory variables, and using a multi-period difference-in-difference (DID) model, to prove the validity of the basic conclusion. The mechanism analysis reveal that Internet development reduce urban CO2 emissions by upgrading industrial structure, promoting green innovation, and strengthening environmental regulation. Moreover, Internet can promote low-carbon development of resource-based cities. This paper provides an important theoretical basis for effectively promoting low-carbon transformation and development at the urban level in China from the perspective of Internet development.

Suggested Citation

  • Pan, Minjie & Zhao, Xin & lv, Kangjuan & Rosak-Szyrocka, Joanna & Mentel, Grzegorz & Truskolaski, Tadeusz, 2023. "Internet development and carbon emission-reduction in the era of digitalization: Where will resource-based cities go?," Resources Policy, Elsevier, vol. 81(C).
  • Handle: RePEc:eee:jrpoli:v:81:y:2023:i:c:s0301420723000533
    DOI: 10.1016/j.resourpol.2023.103345
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723000533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.103345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuming Ren & Lianqing Li & Yueqi Han & Yu Hao & Haitao Wu, 2022. "The emerging driving force of inclusive green growth: Does digital economy agglomeration work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1656-1678, May.
    2. Paunov, Caroline & Rollo, Valentina, 2016. "Has the Internet Fostered Inclusive Innovation in the Developing World?," World Development, Elsevier, vol. 78(C), pages 587-609.
    3. Wang, Chen & Chu, Zhongzhu & Gu, Wei, 2021. "Assessing the role of public attention in China's wastewater treatment: A spatial perspective," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    4. Jiban Khuntia & Terence J. V. Saldanha & Sunil Mithas & V. Sambamurthy, 2018. "Information Technology and Sustainability: Evidence from an Emerging Economy," Production and Operations Management, Production and Operations Management Society, vol. 27(4), pages 756-773, April.
    5. Huo, Weidong & Qi, Jie & Yang, Tong & Liu, Jialu & Liu, Miaomiao & Zhou, Ziqi, 2022. "Effects of China's pilot low-carbon city policy on carbon emission reduction: A quasi-natural experiment based on satellite data," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    6. Thorsten Beck & Ross Levine & Alexey Levkov, 2010. "Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States," Journal of Finance, American Finance Association, vol. 65(5), pages 1637-1667, October.
    7. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    8. Liang Chen & Wanli Li & Kaibin Yuan & Xiaoqian Zhang, 2022. "Can informal environmental regulation promote industrial structure upgrading? Evidence from China," Applied Economics, Taylor & Francis Journals, vol. 54(19), pages 2161-2180, April.
    9. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    10. Margaret S. McMillan & Dani Rodrik, 2011. "Globalization, Structural Change and Productivity Growth," NBER Working Papers 17143, National Bureau of Economic Research, Inc.
    11. Taylor M. Scott, 2005. "Unbundling the Pollution Haven Hypothesis," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 3(2), pages 1-28, June.
    12. Jia, Ruining & Shao, Shuai & Yang, Lili, 2021. "High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach," Energy Economics, Elsevier, vol. 99(C).
    13. Aldieri, Luigi & Gatto, Andrea & Vinci, Concetto Paolo, 2021. "Evaluation of energy resilience and adaptation policies: An energy efficiency analysis," Energy Policy, Elsevier, vol. 157(C).
    14. Yang, Zhenbing & Shao, Shuai & Fan, Meiting & Yang, Lili, 2021. "Wage distortion and green technological progress: A directed technological progress perspective," Ecological Economics, Elsevier, vol. 181(C).
    15. Li, Huijuan & Long, Ruyin & Chen, Hong, 2013. "Economic transition policies in Chinese resource-based cities: An overview of government efforts," Energy Policy, Elsevier, vol. 55(C), pages 251-260.
    16. Salahuddin, Mohammad & Alam, Khorshed & Ozturk, Ilhan, 2016. "The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1226-1235.
    17. Cheng, Zhonghua & Li, Xiang & Wang, Meixiao, 2021. "Resource curse and green economic growth," Resources Policy, Elsevier, vol. 74(C).
    18. Wang, Keying & Wu, Meng & Sun, Yongping & Shi, Xunpeng & Sun, Ao & Zhang, Ping, 2019. "Resource abundance, industrial structure, and regional carbon emissions efficiency in China," Resources Policy, Elsevier, vol. 60(C), pages 203-214.
    19. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    20. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    21. Shao, Shuai & Yang, Lili, 2014. "Natural resource dependence, human capital accumulation, and economic growth: A combined explanation for the resource curse and the resource blessing," Energy Policy, Elsevier, vol. 74(C), pages 632-642.
    22. Tang, Chang & Xu, Yuanyuan & Hao, Yu & Wu, Haitao & Xue, Yan, 2021. "What is the role of telecommunications infrastructure construction in green technology innovation? A firm-level analysis for China," Energy Economics, Elsevier, vol. 103(C).
    23. Minh Son Le & Duc Tho Nguyen & Tarlok Singh, 2014. "Economic Growth and Poverty in Vietnam: Evidence from Elasticity Approach," Discussion Papers in Economics economics:201401, Griffith University, Department of Accounting, Finance and Economics.
    24. Jung Wan Lee & Tantatape Brahmasrene, 2014. "ICT, CO 2 Emissions and Economic Growth: Evidence from a Panel of ASEAN," Global Economic Review, Taylor & Francis Journals, vol. 43(2), pages 93-109, June.
    25. Li, Qiangyi & Zeng, Fu'e & Liu, Shaohui & Yang, Mian & Xu, Fei, 2021. "The effects of China's sustainable development policy for resource-based cities on local industrial transformation," Resources Policy, Elsevier, vol. 71(C).
    26. Margarita Angelidou, 2017. "The Role of Smart City Characteristics in the Plans of Fifteen Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 24(4), pages 3-28, October.
    27. Nathan Nunn & Nancy Qian, 2014. "US Food Aid and Civil Conflict," American Economic Review, American Economic Association, vol. 104(6), pages 1630-1666, June.
    28. Auffhammer, Maximilian & Carson, Richard T., 2008. "Forecasting the path of China's CO2 emissions using province-level information," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 229-247, May.
    29. Sadorsky, Perry, 2012. "Information communication technology and electricity consumption in emerging economies," Energy Policy, Elsevier, vol. 48(C), pages 130-136.
    30. Chen, Shiyi & Jin, Hao & Lu, Yulin, 2019. "Impact of urbanization on CO2 emissions and energy consumption structure: A panel data analysis for Chinese prefecture-level cities," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 107-119.
    31. Avom, Désiré & Nkengfack, Hilaire & Fotio, Hervé Kaffo & Totouom, Armand, 2020. "ICT and environmental quality in Sub-Saharan Africa: Effects and transmission channels," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    32. Zeng, Lijun & Wang, Bingcheng & Fan, Liu & Wu, Jianguo, 2016. "Analyzing sustainability of Chinese mining cities using an association rule mining approach," Resources Policy, Elsevier, vol. 49(C), pages 394-404.
    33. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    34. Zhang, Jiaping & Cheng, Mingwang & Yu, Ning, 2020. "Internet Use and Lower Life Satisfaction: The Mediating Effect of Environmental Quality Perception," Ecological Economics, Elsevier, vol. 176(C).
    35. Xu, Le & Fan, Meiting & Yang, Lili & Shao, Shuai, 2021. "Heterogeneous green innovations and carbon emission performance: Evidence at China's city level," Energy Economics, Elsevier, vol. 99(C).
    36. An, Qingxian & Wu, Qifan & Li, Jinlin & Xiong, Beibei & Chen, Xiaohong, 2019. "Environmental efficiency evaluation for Xiangjiang River basin cities based on an improved SBM model and Global Malmquist index," Energy Economics, Elsevier, vol. 81(C), pages 95-103.
    37. Tang, Chang & Xue, Yan & Wu, Haitao & Irfan, Muhammad & Hao, Yu, 2022. "How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China," Technology in Society, Elsevier, vol. 69(C).
    38. Erik Brynjolfsson & Lorin M. Hitt, 2000. "Beyond Computation: Information Technology, Organizational Transformation and Business Performance," Journal of Economic Perspectives, American Economic Association, vol. 14(4), pages 23-48, Fall.
    39. Yu, Yantuan & Zhang, Ning, 2021. "Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 96(C).
    40. Zhong, Mei-Rui & Xiao, Shun-Li & Zou, Han & Zhang, Yi-Jun & Song, Yi, 2021. "The effects of technical change on carbon intensity in China’s non-ferrous metal industry," Resources Policy, Elsevier, vol. 73(C).
    41. Hu, Yucai & Ren, Shenggang & Wang, Yangjie & Chen, Xiaohong, 2020. "Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China," Energy Economics, Elsevier, vol. 85(C).
    42. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    43. Li, Pei & Lu, Yi & Wang, Jin, 2016. "Does flattening government improve economic performance? Evidence from China," Journal of Development Economics, Elsevier, vol. 123(C), pages 18-37.
    44. Sharma, Gagan Deep & Verma, Mahesh & Shahbaz, Muhammad & Gupta, Mansi & Chopra, Ritika, 2022. "Transitioning green finance from theory to practice for renewable energy development," Renewable Energy, Elsevier, vol. 195(C), pages 554-565.
    45. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    46. Sharma, Gagan Deep & Tiwari, Aviral Kumar & Erkut, Burak & Mundi, Hardeep Singh, 2021. "Exploring the nexus between non-renewable and renewable energy consumptions and economic development: Evidence from panel estimations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    47. Yu, Yanni & Qian, Tao & Du, Limin, 2017. "Carbon productivity growth, technological innovation, and technology gap change of coal-fired power plants in China," Energy Policy, Elsevier, vol. 109(C), pages 479-487.
    48. Wu, Linfei & Sun, Liwen & Qi, Peixiao & Ren, Xiangwei & Sun, Xiaoting, 2021. "Energy endowment, industrial structure upgrading, and CO2 emissions in China: Revisiting resource curse in the context of carbon emissions," Resources Policy, Elsevier, vol. 74(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhe & Teng, Yin-Pei & Wu, Shuzhao & Liu, Yuxiang & Liu, Xianchang, 2023. "Geopolitical risk, financial system and natural resources extraction: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    2. Long, Dengjie & Du, Junhua & Xin, Yongrong, 2023. "Assessing the nexus between natural resource consumption and urban sprawl: Empirical evidence from 288 cities in China," Resources Policy, Elsevier, vol. 85(PB).
    3. Yingwen Ji & Zhiying Shao & Ruifang Wang, 2024. "Does Industrial Symbiosis Improve Carbon Emission Efficiency? Evidence from Chinese National Demonstration Eco-Industrial Parks," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    4. Menglei Yin & Peng Song & Weifeng Yan, 2023. "How Does Network Infrastructure Construction Affect Livestock Carbon Emissions?," Agriculture, MDPI, vol. 13(12), pages 1-25, December.
    5. Wu, Guoyong & Gao, Yue & Feng, Yanchao, 2023. "Assessing the environmental effects of the supporting policies for mineral resource-exhausted cities in China," Resources Policy, Elsevier, vol. 85(PB).
    6. Zhao, Fang & Xu, Yi & Ma, Wanying, 2023. "Geodiversity and natural resource management: The importance of combustible renewables and waste in China," Resources Policy, Elsevier, vol. 85(PB).
    7. Abdelmohsen A. Nassani & Asad Javed & Joanna Rosak-Szyrocka & Ladislav Pilar & Zahid Yousaf & Mohamed Haffar, 2023. "Major Determinants of Innovation Performance in the Context of Healthcare Sector," IJERPH, MDPI, vol. 20(6), pages 1-14, March.
    8. Shah, Syed Ale Raza & Zhang, Qianxiao & Abbas, Jaffar & Balsalobre-Lorente, Daniel & Pilař, Ladislav, 2023. "Technology, Urbanization and Natural Gas Supply Matter for Carbon Neutrality: A New Evidence of Environmental Sustainability under the Prism of COP26," Resources Policy, Elsevier, vol. 82(C).
    9. Wu, Jianxian & Nie, Xin & Wang, Han, 2023. "Curse to blessing: The carbon emissions trading system and resource-based cities' carbon mitigation," Energy Policy, Elsevier, vol. 183(C).
    10. Raihan, Asif, 2023. "Economy-energy-environment nexus: The role of information and communication technology towards green development in Malaysia," Innovation and Green Development, Elsevier, vol. 2(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    2. Tang, Chang & Xue, Yan & Wu, Haitao & Irfan, Muhammad & Hao, Yu, 2022. "How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China," Technology in Society, Elsevier, vol. 69(C).
    3. Shuming Ren & Lianqing Li & Yueqi Han & Yu Hao & Haitao Wu, 2022. "The emerging driving force of inclusive green growth: Does digital economy agglomeration work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1656-1678, May.
    4. Nana Jiang & Wei Jiang & Haibo Chen, 2023. "Innovative urban design for low‐carbon sustainable development: Evidence from China's innovative city pilots," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 698-715, April.
    5. Li, Mengxu & Liu, Jianghua & Chen, Yang & Yang, Zhijiu, 2023. "Can sustainable development strategy reduce income inequality in resource-based regions? A natural resource dependence perspective," Resources Policy, Elsevier, vol. 81(C).
    6. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    7. Chen, Lifeng & Wang, Kaifeng, 2022. "The spatial spillover effect of low-carbon city pilot scheme on green efficiency in China's cities: Evidence from a quasi-natural experiment," Energy Economics, Elsevier, vol. 110(C).
    8. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    9. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    10. Wang, Qingxi & Hu, An & Tian, Zhihua, 2022. "Digital transformation and electricity consumption: Evidence from the Broadband China pilot policy," Energy Economics, Elsevier, vol. 115(C).
    11. Ning Xu & He Zhang & Tixin Li & Xiao Ling & Qian Shen, 2022. "How Big Data Affect Urban Low-Carbon Transformation—A Quasi-Natural Experiment from China," IJERPH, MDPI, vol. 19(23), pages 1-16, December.
    12. Cheng, Xiaoqiang & Yao, Dingjun & Qian, Yuanyuan & Wang, Bin & Zhang, Deliang, 2023. "How does fintech influence carbon emissions: Evidence from China's prefecture-level cities," International Review of Financial Analysis, Elsevier, vol. 87(C).
    13. Zhu, Qing & Ma, Dan & He, Xin, 2023. "Digital transformation and firms' pollution emissions," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    14. Mengyao Liu & Yan Hou & Hongli Jiang, 2023. "The Energy-Saving Effect of E-Commerce Development—A Quasi-Natural Experiment in China," Energies, MDPI, vol. 16(12), pages 1-22, June.
    15. Qi, Xiulin & Wu, Zhifang & Xu, Jinqing & Shan, Biaoan, 2023. "Environmental justice and green innovation: A quasi-natural experiment based on the establishment of environmental courts in China," Ecological Economics, Elsevier, vol. 205(C).
    16. Wang, Jianda & Dong, Kangyin & Sha, Yezhou & Yan, Cheng, 2022. "Envisaging the carbon emissions efficiency of digitalization: The case of the internet economy for China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    17. Tang, Chang & Xu, Yuanyuan & Hao, Yu & Wu, Haitao & Xue, Yan, 2021. "What is the role of telecommunications infrastructure construction in green technology innovation? A firm-level analysis for China," Energy Economics, Elsevier, vol. 103(C).
    18. Yan, Yu & Huang, Junbing, 2022. "The role of population agglomeration played in China's carbon intensity: A city-level analysis," Energy Economics, Elsevier, vol. 114(C).
    19. Xu, Qiong & Zhong, Meirui & Li, Xin, 2022. "How does digitalization affect energy? International evidence," Energy Economics, Elsevier, vol. 107(C).
    20. Du, Yanan & Zhou, Jianping & Bai, Jiancheng & Cao, Yujia, 2023. "Breaking the resource curse: The perspective of improving carbon emission efficiency based on digital infrastructure construction," Resources Policy, Elsevier, vol. 85(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:81:y:2023:i:c:s0301420723000533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.