IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v115y2022ics0140988322004753.html
   My bibliography  Save this article

Digital transformation and electricity consumption: Evidence from the Broadband China pilot policy

Author

Listed:
  • Wang, Qingxi
  • Hu, An
  • Tian, Zhihua

Abstract

Taking the Broadband China pilot policy as a quasi-natural experiment, this paper establishes a Difference-in-Differences (DID) model to investigate the impact of digital transformation on electricity consumption based on the panel data of 278 cities in China from 2006 to 2017. The results show that digital transformation significantly reduces electricity consumption and intensity, and this electricity-saving effect is achieved through technological optimization and industrial upgrading brought about by digital transformation. The electricity-saving effect of digital transformation is particularly prominent in cities with large populations and large economic sizes. In addition, we also find that digital transformation has a more significant impact on reducing electricity consumption in the industrial sector than in the household sector. Our findings provide empirical evidence for reducing energy consumption and carbon emissions through digital technology applications.

Suggested Citation

  • Wang, Qingxi & Hu, An & Tian, Zhihua, 2022. "Digital transformation and electricity consumption: Evidence from the Broadband China pilot policy," Energy Economics, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:eneeco:v:115:y:2022:i:c:s0140988322004753
    DOI: 10.1016/j.eneco.2022.106346
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322004753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paunov, Caroline & Rollo, Valentina, 2016. "Has the Internet Fostered Inclusive Innovation in the Developing World?," World Development, Elsevier, vol. 78(C), pages 587-609.
    2. Dincer, Ibrahim & Rosen, Marc A., 1999. "Energy, environment and sustainable development," Applied Energy, Elsevier, vol. 64(1-4), pages 427-440, September.
    3. Thorsten Beck & Ross Levine & Alexey Levkov, 2010. "Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States," Journal of Finance, American Finance Association, vol. 65(5), pages 1637-1667, October.
    4. Ronald Bernstein & Reinhard Madlener, 2010. "Impact of disaggregated ICT capital on electricity intensity in European manufacturing," Applied Economics Letters, Taylor & Francis Journals, vol. 17(17), pages 1691-1695.
    5. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    6. Dale W. Jorgenson, 2001. "Information Technology and the U.S. Economy," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 5(1), pages 3-34.
    7. Anusua Datta & Sumit Agarwal, 2004. "Telecommunications and economic growth: a panel data approach," Applied Economics, Taylor & Francis Journals, vol. 36(15), pages 1649-1654.
    8. Joshua Graff Zivin & Matthew Neidell, 2012. "The Impact of Pollution on Worker Productivity," American Economic Review, American Economic Association, vol. 102(7), pages 3652-3673, December.
    9. Eliana La Ferrara & Alberto Chong & Suzanne Duryea, 2012. "Soap Operas and Fertility: Evidence from Brazil," American Economic Journal: Applied Economics, American Economic Association, vol. 4(4), pages 1-31, October.
    10. Kevin J. Stiroh, 2002. "Information Technology and the U.S. Productivity Revival: What Do the Industry Data Say?," American Economic Review, American Economic Association, vol. 92(5), pages 1559-1576, December.
    11. Coneus, Katja & Spiess, C. Katharina, 2012. "Pollution exposure and child health: Evidence for infants and toddlers in Germany," Journal of Health Economics, Elsevier, vol. 31(1), pages 180-196.
    12. Vassileva, Iana & Wallin, Fredrik & Dahlquist, Erik, 2012. "Understanding energy consumption behavior for future demand response strategy development," Energy, Elsevier, vol. 46(1), pages 94-100.
    13. Simon Commander & Rupert Harrison & Naercio Menezes-Filho, 2011. "ICT and Productivity in Developing Countries: New Firm-Level Evidence from Brazil and India," The Review of Economics and Statistics, MIT Press, vol. 93(2), pages 528-541, May.
    14. Chen, Yang & Shao, Shuai & Fan, Meiting & Tian, Zhihua & Yang, Lili, 2022. "One man's loss is another's gain: Does clean energy development reduce CO2 emissions in China? Evidence based on the spatial Durbin model," Energy Economics, Elsevier, vol. 107(C).
    15. Tang, Chang & Xu, Yuanyuan & Hao, Yu & Wu, Haitao & Xue, Yan, 2021. "What is the role of telecommunications infrastructure construction in green technology innovation? A firm-level analysis for China," Energy Economics, Elsevier, vol. 103(C).
    16. Lars-Hendrik Roller & Leonard Waverman, 2001. "Telecommunications Infrastructure and Economic Development: A Simultaneous Approach," American Economic Review, American Economic Association, vol. 91(4), pages 909-923, September.
    17. Cheng, Chih-Yang & Chien, Mei-Se & Lee, Chien-Chiang, 2021. "ICT diffusion, financial development, and economic growth: An international cross-country analysis," Economic Modelling, Elsevier, vol. 94(C), pages 662-671.
    18. Sadorsky, Perry, 2012. "Information communication technology and electricity consumption in emerging economies," Energy Policy, Elsevier, vol. 48(C), pages 130-136.
    19. Pardo Martínez, Clara Inés, 2015. "Energy and sustainable development in cities: A case study of Bogotá," Energy, Elsevier, vol. 92(P3), pages 612-621.
    20. Nina Czernich & Oliver Falck & Tobias Kretschmer & Ludger Woessmann, 2011. "Broadband Infrastructure and Economic Growth," Economic Journal, Royal Economic Society, vol. 121(552), pages 505-532, May.
    21. Ben Lahouel, Béchir & Taleb, Lotfi & Ben Zaied, Younes & Managi, Shunsuke, 2021. "Does ICT change the relationship between total factor productivity and CO2 emissions? Evidence based on a nonlinear model," Energy Economics, Elsevier, vol. 101(C).
    22. Tian, Zhihua & Tian, Yanfang, 2021. "Political incentives, Party Congress, and pollution cycle: empirical evidence from China," Environment and Development Economics, Cambridge University Press, vol. 26(2), pages 188-204, April.
    23. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    24. Mendiluce, María & Pérez-Arriaga, Ignacio & Ocaña, Carlos, 2010. "Comparison of the evolution of energy intensity in Spain and in the EU15. Why is Spain different?," Energy Policy, Elsevier, vol. 38(1), pages 639-645, January.
    25. Patrick Schulte & Heinz Welsch & Sascha Rexhäuser, 2016. "ICT and the Demand for Energy: Evidence from OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(1), pages 119-146, January.
    26. Chun, Hyunbae & Kim, Jung-Wook & Lee, Jason, 2015. "How does information technology improve aggregate productivity? A new channel of productivity dispersion and reallocation," Research Policy, Elsevier, vol. 44(5), pages 999-1016.
    27. Moyer, Jonathan D. & Hughes, Barry B., 2012. "ICTs: Do they contribute to increased carbon emissions?," Technological Forecasting and Social Change, Elsevier, vol. 79(5), pages 919-931.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Dengjie & Du, Junhua & Xin, Yongrong, 2023. "Assessing the nexus between natural resource consumption and urban sprawl: Empirical evidence from 288 cities in China," Resources Policy, Elsevier, vol. 85(PB).
    2. Mengyao Liu & Yan Hou & Hongli Jiang, 2023. "The Energy-Saving Effect of E-Commerce Development—A Quasi-Natural Experiment in China," Energies, MDPI, vol. 16(12), pages 1-22, June.
    3. Zhang, Wenqiu & Zhao, Junli, 2023. "Digital transformation, environmental disclosure, and environmental performance: An examination based on listed companies in heavy-pollution industries in China," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 505-518.
    4. Jie Lv & Lu Huang & Xiaoting Li, 2022. "Does the Creation of Food Safety Demonstration Cities Promote Agricultural Development? Evidence from China," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    5. Shang, Yuping & Raza, Syed Ali & Huo, Zhe & Shahzad, Umer & Zhao, Xin, 2023. "Does enterprise digital transformation contribute to the carbon emission reduction? Micro-level evidence from China," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 1-13.
    6. Xiuyun Yang & Qi Han, 2023. "Nonlinear Effects of Environmental Data Disclosure on Urban Pollution Emissions: Evidence from China," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    7. Huang, Chenchen & Lin, Boqiang, 2023. "Promoting decarbonization in the power sector: How important is digital transformation?," Energy Policy, Elsevier, vol. 182(C).
    8. Du, Yanan & Zhou, Jianping & Bai, Jiancheng & Cao, Yujia, 2023. "Breaking the resource curse: The perspective of improving carbon emission efficiency based on digital infrastructure construction," Resources Policy, Elsevier, vol. 85(PB).
    9. Jia, Shanghui & Guo, Nannan & Liu, Yingke, 2023. "Electricity shortage and corporate digital transformation: Evidence from China's listed firms," Finance Research Letters, Elsevier, vol. 57(C).
    10. Guoen Xia & Zenghui Yu & Xuwu Peng, 2023. "How Does Enterprise Digital Transformation Affect Total Factor Productivity? Based on the Information Intermediary Role of Analysts’ Attention," Sustainability, MDPI, vol. 15(11), pages 1-22, May.
    11. Li, Shibin & Wang, Qian, 2023. "Green finance policy and digital transformation of heavily polluting firms: Evidence from China," Finance Research Letters, Elsevier, vol. 55(PA).
    12. Bei Liu & Yukun Li & Xiaoya Tian & Lipeng Sun & Pishi Xiu, 2023. "Can Digital Economy Development Contribute to the Low-Carbon Transition? Evidence from the City Level in China," IJERPH, MDPI, vol. 20(3), pages 1-19, February.
    13. Zhang, Weike & Fan, Hongxia & Zhao, Qiwei, 2023. "Seeing green: How does digital infrastructure affect carbon emission intensity?," Energy Economics, Elsevier, vol. 127(PB).
    14. Kangjuan Lv & Jiaqi Li & Ye Zhao, 2023. "Can Internet Construction Promote Urban Green Development? A Quasi-Natural Experiment from the “Broadband China”," IJERPH, MDPI, vol. 20(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Chang & Xue, Yan & Wu, Haitao & Irfan, Muhammad & Hao, Yu, 2022. "How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China," Technology in Society, Elsevier, vol. 69(C).
    2. Tang, Chang & Xu, Yuanyuan & Hao, Yu & Wu, Haitao & Xue, Yan, 2021. "What is the role of telecommunications infrastructure construction in green technology innovation? A firm-level analysis for China," Energy Economics, Elsevier, vol. 103(C).
    3. Xu, Qiong & Zhong, Meirui & Li, Xin, 2022. "How does digitalization affect energy? International evidence," Energy Economics, Elsevier, vol. 107(C).
    4. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    5. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    6. Bo Li & Jing Liu & Qian Liu & Muhammad Mohiuddin, 2022. "The Effects of Broadband Infrastructure on Carbon Emission Efficiency of Resource-Based Cities in China: A Quasi-Natural Experiment from the “Broadband China” Pilot Policy," IJERPH, MDPI, vol. 19(11), pages 1-27, May.
    7. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    8. Lee, Chien-Chiang & Yuan, Zihao & Wang, Qiaoru, 2022. "How does information and communication technology affect energy security? International evidence," Energy Economics, Elsevier, vol. 109(C).
    9. Axenbeck, Janna & Berner, Anne & Kneib, Thomas, 2022. "What drives the relationship between digitalization and industrial energy demand? Exploring firm-level heterogeneity," ZEW Discussion Papers 22-059, ZEW - Leibniz Centre for European Economic Research.
    10. Pan, Minjie & Zhao, Xin & lv, Kangjuan & Rosak-Szyrocka, Joanna & Mentel, Grzegorz & Truskolaski, Tadeusz, 2023. "Internet development and carbon emission-reduction in the era of digitalization: Where will resource-based cities go?," Resources Policy, Elsevier, vol. 81(C).
    11. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    12. Wang, Lianghu & Shao, Jun, 2023. "Digital economy, entrepreneurship and energy efficiency," Energy, Elsevier, vol. 269(C).
    13. Feng, Yuan & Chen, Zhi & Nie, Changfei, 2023. "The effect of broadband infrastructure construction on urban green innovation: Evidence from a quasi-natural experiment in China," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 581-598.
    14. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    15. Lee, Chien-Chiang & He, Zhi-Wen & Xiao, Fu, 2022. "How does information and communication technology affect renewable energy technology innovation? International evidence," Renewable Energy, Elsevier, vol. 200(C), pages 546-557.
    16. Yu Hao & Yunxia Guo & Haitao Wu, 2022. "The role of information and communication technology on green total factor energy efficiency: Does environmental regulation work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 403-424, January.
    17. Bai, Ling & Guo, Tianran & Xu, Wei & Liu, Yaobin & Kuang, Ming & Jiang, Lei, 2023. "Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model," Energy Policy, Elsevier, vol. 183(C).
    18. Niebel, Thomas, 2018. "ICT and economic growth – Comparing developing, emerging and developed countries," World Development, Elsevier, vol. 104(C), pages 197-211.
    19. Ben Lahouel, Béchir & Taleb, Lotfi & Ben Zaied, Younes & Managi, Shunsuke, 2021. "Does ICT change the relationship between total factor productivity and CO2 emissions? Evidence based on a nonlinear model," Energy Economics, Elsevier, vol. 101(C).
    20. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:115:y:2022:i:c:s0140988322004753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.